
Developer Manual
Version 7.2.2

Formcentric for FirstSpirit: Developer Manual

Copyright © 2025 Formcentric GmbH
Schaartor 1, 20459 Hamburg
Germany

The contents of this document – whether in whole or in part – may not be reproduced,
conveyed, disseminated or stored in any form whatsoever without obtaining prior written
permission from Formcentric GmbH.

Disclaimer

We reserve the right to alter the software and the contents of the manual without notice. We
accept no liability for the accuracy of the contents of the manual, nor for any losses that may
result from the use of this software.

Trademarks

In the course of this manual, references may be made to trademarks that are not explicitly
marked as such. Even if such a mark is not given, the reader should not conclude that the
name is free of third-party rights.

Access to documentation

You can always find the latest version of the manual in the Help centre help.formcentric.com.
Older versions and additional information are available in the Formcentric Helpdesk
helpdesk.formcentric.com.

https://help.formcentric.com/en/
https://helpdesk.formcentric.com

Formcentric for FirstSpirit | Developer Manual iii

1. Introduction .. 1
1.1. Terminology .. 1

2. Overview .. 2
3. System requirements .. 3

3.1. Java .. 3
3.2. FirstSpirit ... 3

4. Installation and configuration .. 4
4.1. Installing the Formcentric module .. 4
4.2. Licence file ... 5
4.3. Installing the Formcentric web editor ... 5
4.4. Formcentric web applications ... 6

4.4.1. Installation .. 7
4.4.2. Configuration .. 8

4.5. Analytics Backend web application .. 19
4.5.1. Installation .. 19
4.5.2. Configuration .. 20

4.6. Analytics Reporting web application .. 29
4.6.1. Installation .. 29
4.6.2. Configuration .. 30

4.7. Solr web application ... 30
4.8. Formcentric project components .. 32

4.8.1. Project resources ... 32
4.8.2. Project configuration .. 33

4.9. Configuring the publication tasks ... 34
4.10. Password encryption .. 37

5. Extending the FirstSpirit project .. 39
5.1. Paragraph style sheet .. 39

5.1.1. Properties tab .. 39
5.1.2. Form tab .. 39
5.1.3. Internet (HTML) tab ... 49

5.2. formcentric_headless_url script .. 51
5.3. formcentric_encrypted_form script ... 51
5.4. formcentric_encrypted_refs script ... 52
5.5. formcentric_login_ticket script .. 52
5.6. Page template .. 52
5.7. Themes ... 54
5.8. CSS .. 54

6. Programming and customisation ... 55
6.1. Development workspace .. 55
6.2. Monday Maven plugin .. 56
6.3. Extending the input component in Site Manager ... 59

6.3.1. Developing a NodeEditorPane .. 60
6.3.2. Extending the EditorSetup class ... 61
6.3.3. Extending the Form Editor GUI object model .. 62

6.4. Extending the ContentCreator web application .. 63

Formcentric for FirstSpirit | Developer Manual iv

6.4.1. Adding a new form element .. 63
6.4.2. Adding a new validator .. 66
6.4.3. Adding a new action .. 67
6.4.4. Adding new element properties ... 69
6.4.5. Input elements for element properties ... 70
6.4.6. Editing existing form elements .. 77
6.4.7. User interface internationalisation ... 77

6.5. Extending the Spring MVC web application ... 77
6.5.1. Spring configuration files ... 77
6.5.2. Property Files .. 84
6.5.3. Usage without Formcentric Analytics .. 86
6.5.4. Formcentric licence file .. 87
6.5.5. Web security .. 87
6.5.6. Saving the form status .. 90
6.5.7. Implementing an action ... 91
6.5.8. Adding variables for pre-filling form fields ... 93
6.5.9. Implementing a REST service ... 94
6.5.10. Template development .. 99
6.5.11. JavaScript .. 120

6.6. Extending the headless web application .. 125
6.6.1. Implementing an action ... 126
6.6.2. Adding variables for pre-filling form fields ... 127
6.6.3. Implementing a REST service ... 128
6.6.4. Property Files .. 129

6.7. Formcentric client ... 133
6.7.1. Theme .. 134
6.7.2. Initialisation .. 134
6.7.3. Templates .. 134
6.7.4. Special integration scenarios ... 142
6.7.5. Troubleshooting ... 142

Formcentric for FirstSpirit | Developer Manual 1

1. Introduction
This manual describes how to install, configure and extend the Formcentric form
manager extension. It is intended to be read by administrators and developers. To
get the most out of this document, you will need knowledge of FirstSpirit from both
an administrator and user perspective, as well as experience in developing Java soft-
ware.

Chapter 4, Installation and configuration : describes the steps that you need to
complete in order to install and configure Formcentric. The installation instructions
assume that you have deployed Formcentric Analytics. If this isn’t the case, then you
can skip all of the sections that relate to Formcentric Analytics.

Chapter 5, Extending the FirstSpirit project : describes the extensions and modi-
fications that you complete within a FirstSpirit project.

Chapter 6, Programming and customisation : shows how you can extend Form-
centric to offer additional functionality.

1.1. Terminology
This manual makes use of the following terms:

Term Description

Form author The person that creates and edit forms.

User The person that fills out a form.

Form An HTML web form displayed in a web browser.

Form elements All of the elements used when constructing a form (input fields,
drop-down lists, check boxes, etc.).

Form Editor Input component in FirstSpirit SiteArchitect or ContentCreator,
used for creating and editing forms.

Form data The data entered into the form by the user.

Editor FirstSpirit SiteArchitect or ContentCreator

Formcentric client React application for browser-based form presentation.

Formcentric for FirstSpirit | Developer Manual 2

2. Overview
On the editing side, Formcentric extends the FirstSpirit system to provide an input
component with which form authors can create and edit dynamic web-based forms.

Two additional web app modules are available for presenting the forms as well as
processing the submitted form data. The first is a conventional web application with
server-side generation of the HTML output (referred to in this manual as the Spring
MVC web app) while the second is a modern headless application with client-side
rendering. Both web applications include various Spring controllers for processing the
data. A form controller validates the data it receives and forwards these to purpose-
built actions, which then carry out the final processing. This approach permits the
integration of various backend systems, such as mail servers, Formcentric Analytics
or databases.

The Analytics component included with Formcentric provides storage and reporting
functions for the form data submitted. Formcentric Analytics consists of two global
web app modules. The Backend web app module is responsible for storing the data
in a relational database. To do so, it provides a REST interface, which clients can use
to communicate with the Backend. Alongside the actual form data, the Backend also
stores form sessions if this feature has been activated for the form in question.

The Reporting web app module is a modern, single-page application with which the
form data stored in the Backend can be displayed, deleted and exported.

FirstSpirit Server

Formcentric
WebApp Component

HTTP Server / JSP & Servlet Engine

FirstSpirit Interface (Access API, client side)

Global WebApp
fc_preview

Global WebApp
fc_headless_preview

Formcentric
WebApp Component

FirstSpirit
WebEdit Engine

Formcentric
WebEdit Component

Edit and Preview Environment

Formcentric Analytics Environment (Preview)

Search Engine

Formcentric Analytics Environment (Live)

Backend
WebApp Component

Global WebApp
fc_reporting

Global WebApp
fc_backend

Reporting
WebApp Component

Analytics
DB

Search
Index

Company Infrastructure

LDAP Server

Mail Server

FirstSpirit
Runtime

HTTP Server / JSP & Servlet Engine

FirstSpirit Interface (Access API, client side)

Global WebApp
fc_live

Formcentric
WebApp Component

FirstSpirit Live System

Browser

Website

Formcentric
WebApp Component

Search Engine

Backend
WebApp Component

Global WebApp
fc_reporting

Global WebApp
fc_backend

Reporting
WebApp Component

Analytics
DB

Search
Index

Global WebApp
fc_headless_live

RabbitMQ

Formcentric
Executables

Editing

FirstSpirit Interface (Access API, client side)

Formcentric
Configuration

Formcentric
WebGadget

Formcentric
SwingGadget

ServerManager SiteArchitect ContentCreator

Browser

Formcentric
Client

HTTP Server / JSP & Servlet Engine HTTP Server / JSP & Servlet Engine

Figure 2.1. Architecture overview

Formcentric for FirstSpirit | Developer Manual 3

3. System requirements
To be able to use Formcentric 7.2.2, you need to deploy FirstSpirit version 5.2.201209
or higher.

Formcentric requires the JavaScript framework “jQuery” from version 1.12.4.

If the PDF action loads the required PDF template documents from a local directory,
then the external program rsync will be required on the FirstSpirit Server. For further
information about installing and configuring “rsync” in conjunction with FirstSpirit,
please see section 10 of the FirstSpirit “Administrator Documentation”.

3.1. Java
Formcentric can be used with the following Java versions. Formcentric must
be executed within a servlet container that is compliant with the JSP 2.3 and
Java Servlet 3.1 specifications.

Java Status

OpenJDK 17 supported (recommended)

The requirements for the Java version are also always dependent on the FirstSpirit
version deployed. Java 17 is the minimum requirement from FirstSpirit 2023-11
onwards.

3.2. FirstSpirit
You can use Formcentric with the following versions of FirstSpirit. If you are
using a different version, then modifications may need to be made to the
FirstSpirit Runtime Java-Library (see Section 4.1, “Installing the Formcentric
module”). This will certainly be the case if you are using a more recent version.

FirstSpirit Status

FirstSpirit 2402.11 - 2404.08 (Isolated Mode) supported (recommended)

Formcentric for FirstSpirit | Developer Manual 4

4. Installation and configuration
You install and configure Formcentric using FirstSpirit’s Server and Project Configu-
ration.

4.1. Installing the Formcentric module
To do so, go to Server Properties and select the menu option Modules. Then click
the Install button. This opens a file selection pop-up, in which you need to select the
formcentric-7.2.2.fsm archive file to be installed.

The Formcentric module contains a service for querying licence information. This
service is required for both installing and running Formcentric. After loading the
archive file, the system therefore asks you if you want the services included in the
module to be started automatically. Answer this question with Yes.

Figure 4.1. Starting services automatically

Once you have successfully installed the file, the system then displays the Formcen-
tric (I) module with the components that it includes.

Now select the new Formcentric (I) entry, click Configure, check the check box All
rights and confirm your change.

Figure 4.2. Module list under Server Properties

Formcentric for FirstSpirit | Developer Manual 5

Module permissions become effective only once the FirstSpirit server has been
restarted. Once restarted, continue the installation by following the instructions below.

4.2. Licence file
Double-click the Formcentric License Service entry in the module overview to open a
configuration dialog. Here, upload the licence file that you have received from Form-
centric. To do so, click the Import licence file button and select the licence file in the
file selection pop-up that then appears.

Figure 4.3. Configuring the licence file

Close the configuration dialog box by clicking OK.

To ensure that the licence file is also available in the Formcentric web applications,
these applications must be updated after each licence update.

The licence file is typically valid for 12 months. During the last 30 days before the
licence expires, a warning is output to the Formcentric web application log every six
hours. No other warning is given. The execution of form actions stops instantly as
soon as the licence expires. The forms will continue to be shown correctly on the
website, however.

4.3. Installing the Formcentric web editor
For creating and editing forms in the FirstSpirit ContentCreator, Formcentric provides
a ContentCreator extension.

To install this extension, switch to the Web applications section.

In this area, add the Formcentric web editor to the existing ContentCreator web
application by clicking Add. In the following selection dialog, all of the available web
components are displayed. Select the Formcentric WebEditor entry.

Close the selection dialog box by clicking OK.

Formcentric for FirstSpirit | Developer Manual 6

Figure 4.4. Installing the Formcentric web editor

You then need to update the ContentCreator web application on the web server.

4.4. Formcentric web applications

Formcentric provides two separate web app modules to handle form presentation and
processing. One of these modules is a Spring MVC web application, while the other
is a headless web application.

With the Spring MVC web application from Formcentric, data processing and
rendering for forms is handled server-side based on Spring MVC plus JSP/
FreeMarker templates. In contrast, the headless web application uses a modern,
decentralised architecture that separates the backend (data processing) from the fron-
tend (UI rendering). This application utilises Spring Boot for the backend and React
for the frontend.

With the exception of the points discussed in section the section called “File upload
tab (headless)”, configuration is the same for both web applications. The following
section therefore describes configuration using the headless app as an example.

Typically, separate instances of the web applications are installed for the preview
and live sites. For this reason, during the first installation of the module, the
global web applications fc_preview for the Spring-MVC web application and
fc_preview_headless for the headless application are automatically created. The web
applications for the live sites are only automatically created if they are configured as
described below.

To support automated deployment processes, it is possible to specify via system
parameters whether and which global web applications should be created during
the module installation, and on which web servers (e.g., Tomcat, InternalJetty) they
should be installed. If a parameter is left empty, the corresponding web application
will not be created.

Formcentric for FirstSpirit | Developer Manual 7

The following system parameters are available for configuration:
fc.preview.webserver, fc.live.webserver, fc.preview.headless.webserver and
fc.live.headless.webserver.

If you want to use different names for the web apps, please manually perform the
steps listed in the section 4.4.1 for the respective web application.

4.4.1. Installation

Create a new global web application. This is required for form presentation within the
web page.

You create a new web application by accessing the Web applications area and then
clicking the Add button.

Figure 4.5. Adding a global web application

In the following dialog box, enter the web application's ID, name and context. Close
the dialog box by clicking OK.

Figure 4.6. Adding a new web application

Typically, the following IDs are used: fc_preview_headless for the
Preview application and fc_live_headless for the Live application. If
you assign different IDs, you must also modify these in the script

Formcentric for FirstSpirit | Developer Manual 8

formcentric_headless_url (see Section 5.2, “formcentric_headless_url
script”).

In the next step, you add the Formcentric web app module to the web application just
created. Click Add and then select Formcentric Headless WebApp.

Figure 4.7. Global web application with installed web component

4.4.2. Configuration

Double-click the Formcentric Headless WebApp web component to open the config-
uration screen, which contains multiple tabs.

Mail server tab

You use the Mail server tab to configure the mail server used by the form extension
to send its emails.

Figure 4.8. Configuring the web application on the “Mail server” tab

Formcentric for FirstSpirit | Developer Manual 9

Host: Name or IP address of the SMTP mail server.

Port: Port number of the mail server.

User: The name used to log into the mail server.

Password: The password used to log into the mail server.

Charset: The character encoding in which emails are sent (such as utf-8,
iso-8859-15, etc.).

SMTP authentication: By activating this check box, you specify that the login data
(user, password) will be used when negotiating with the SMTP server.

Use TLS encryption: Configure this property if STARTTLS must be used.

Encode non-ASCII characters in filename: Check this box to encode all non-ASCII
characters in the filename. Please note that this encoding does not comply with the
MIME specification but is useful to maintain compatibility with some email clients that
utilise this convention. The default value is TRUE.

Debug: By checking this check box, you specify that a detailed set of status informa-
tion will be written to the log for every email sent. This information includes all of the
body content, metadata and headers, which could contain personal data.

PDF export tab

The PDF export tab is used to configure global settings for the PDF action.

Figure 4.9. Configuring the web application on the “PDF export” tab

Load PDF templates from local directory: From version 5.5.0 of Formcentric, the
PDF template documents are loaded by default directly from the Preview or Live web
app. Select this option if you want to load the template documents from a local direc-
tory, as previously. In this case, you must publish the templates beforehand.

Formcentric for FirstSpirit | Developer Manual 10

Template directory: In this field, you specify the path to the directory to which the
PDF template documents are copied on publication (see also Section 4.9, “Config-
uring the publication tasks”). The web application must have access to this directory.
The user account under which the web server runs also requires read permissions
for the specified directory.

You can specify the template directory either as relative to the web app directory (for
example WEB-INF/pdf) or as an absolute directory (for example /var/pdf or c:/var/pdf).
If the directory does not exist, then it is created when the application is started. In this
case, the user must also have write permissions for the parent directory.

Download PDF templates from the website: Select this option if PDF template
documents should be loaded from the Preview or Live web app. In this case, just as
for other content, the documents must be published in the corresponding website.

Base URL: Enter the external address here at which the website is accessible.

FS server tab

On the FS server tab, you enter the connection data to your FirstSpirit server. These
details are required for the Data source and Media Management actions.

Figure 4.10. Configuring the web application on the “FS server” tab

Protocol: Here you select the communication protocol (HTTP or socket) used to
communicate with the FirstSpirit server.

Use HTTPS: When using HTTP as the communication protocol, checking this check
box activates encryption for all communication with the server.

Host: Name or IP address of the FirstSpirit server.

Port: Port number of the FirstSpirit server.

Formcentric for FirstSpirit | Developer Manual 11

User: The name used to log into the FirstSpirit server.

Password: The password used to log into the FirstSpirit server.

No. of sessions: The maximum number of sessions that can be open simultaneously
on the FirstSpirit server.

To establish a connection to the FirstSpirit server, the system needs the
name of the host (hostname) from which the web app can access the server.
The web app must also be capable of establishing a connection to the port
on the FirstSpirit server. In some circumstances, it may be necessary to
configure access to this port if a firewall is used.

The maximum number of sessions will depend on your FirstSpirit licence.
Please note that in some circumstances, the number of sessions specified
on the tab page may no longer be available to your form authors.

Formcentric Analytics tab

You use the Formcentric Analytics tab to configure the connection parameters to the
Formcentric Analytics Backend.

Figure 4.11. Web application configuration on the “Formcentric Analytics” tab

Analytics Backend URL: URL at which the Formcentric Analytics Backend can be
reached.

Backend authentication: Enter the secret used to log into the Analytics Backend
here. This must match the Backend client secret that you issued during the configu-
ration of the Analytics Backend (see the section called “Security tab”).

Formcentric for FirstSpirit | Developer Manual 12

Collect personal metadata: Check this box to store the following metadata in addi-
tion to the form data entered: information about the browser being used (User-Agent),
the configured browser language (Language) and the page visited before this page
(Referer). In some cases, this metadata can be used to associate separate and self-
contained data records with a specific individual.

Instead of the client secret, a pre-generated access token can also be used.
To do so, you will need to modify the Spring configuration, however (see the
section called “formcentric-analytics.xml”).

Proxy tab

PDF template documents are loaded by default directly from the Preview or Live web
app. If access to the web applications should be made via a web proxy, you must
configure this proxy on the Proxy tab.

Figure 4.12. Configuring a web proxy on the “Proxy” tab

No proxy: Activate this setting if you do not want to use a proxy.

Manual proxy configuration: Select this setting if you want to enter the proxy
settings manually.

HTTP proxy: Host name of the proxy server that is to be used.

Port: The proxy server port.

Username: The username used to log into the proxy server.

Password: The password used to log into the proxy server.

Automatic proxy configuration: Select this option if you want to use a proxy config-
uration file (.pac) instead of configuring the proxy manually.

Formcentric for FirstSpirit | Developer Manual 13

URL: Enter the address (URL) here from which the configuration file should be
loaded.

Captcha tab

For the captcha element, you can either use jCaptcha as provided by Formcentric
or other services like Google’s reCAPTCHA or Friendly Captcha. For these services,
you will always need an account and login credentials. These details are not provided
by Formcentric. You use the Captcha tab to configure the service used and the corre-
sponding login credentials.

Figure 4.13. Configuring the captcha service on the “Captcha” tab

Captcha service: Select the captcha service you want to use.

API secret: Enter the API secret provided by your captcha service.

Site key: Enter the site key provided by your captcha service.

API endpoint: For Friendly Captcha, the API endpoint allows the optional use of the
EU endpoint. To do so, the value needs to be set to EU . For more information, please
see https://developer.friendlycaptcha.com/docs/v2/guides/eu-endpoint.

CORS tab

As explained elsewhere, the forms are generated by a dedicated web app component
and embedded dynamically into the surrounding web page. This web app is accessed
by using an asynchronous JavaScript request (AJAX).

In a scenario where the forms web app is hosted on a separate (sub)domain (e.g.
http://forms.mydomain.com), access requests to the form will be viewed as ‘cross-
origin requests’. These kinds of requests are normally prohibited by the ‘same-origin
policy’ (SOP) and therefore blocked by modern browsers. However, these restrictions
can be removed by setting access control headers for certain clients.

https://developer.friendlycaptcha.com/docs/v2/guides/eu-endpoint

Formcentric for FirstSpirit | Developer Manual 14

The CORS tab gives you the option of configuring these access control headers to
suit your individual requirements.

Figure 4.14. Configuring cross-origin resource sharing (CORS)

Allow-Origin: Enter a comma-separated list of domains here from which access
to the form web app will be permitted (e.g. www.mydomain.com, www.another-
domain.com). You can specify that access is permitted from any domain by entering
an asterisk “*”. This is the default setting.

Allow-Headers: You use this parameter to specify the HTTP headers that are
permitted to be passed across domain boundaries. You can specify that all HTTP
headers are permitted by entering an asterisk “*”. This is the default setting.

Expose-Headers: You use this parameter to specify the HTTP headers that are
permitted to be included in the server reply. The HTTP headers X-Redirect-Location
and X-Redirect-Delay are evaluated by the Formcentric jQuery plugin and are there-
fore always permitted.

Max-Age: You use this parameter to specify the period of validity for the information
from a pre-flight request.

If you operate the form web app under a separate domain, as described, then the
application generates fully-qualified URLs in the HTML output automatically. The
base URL that is used here is the base URL accessed by the browser, e.g. https://
forms.mydomain.com/.

If the form application is accessed via an intervening load balancer or reverse proxy,
the HTTP request will only receive information about the connection from the load
balancer to the application. The load balancer must set additional HTTP request
headers in order to forward the connection data originally used by the accessing
browser – such as host, port, etc. – to the application. Among other things, the appli-
cation needs these headers in order to generate fully-qualified URLs.

Formcentric for FirstSpirit | Developer Manual 15

The following headers must be added:

HTTP request header Description

X-Forwarded-Proto Protocol (HTTP or HTTPS) that the browser
has used to make the connection to your
load balancer.

X-Forwarded-Host Host that the browser has used to make the
connection to the load balancer.

X-Forwarded-Port Port that the browser has used to make the
connection to the load balancer.

X-Forwarded-For IP address of the accessing browser

Metrics tab (Spring-MVC)

To monitor operationally relevant system metrics such as memory usage or CPU load
of the Spring MVC web application, Formcentric provides various metrics. You can
access them via the following URL:

/fc_live/servlet/secure/health

By default, the metrics are delivered in a text format compatible with the monitoring
system Prometheus.

Information about the usage of the forms can be found at the following URL:

/fc_live/servlet/secure/usage

Access to the metrics is secured with a login (basic authentication). You specify the
associated login credentials on the Metrics tab.

Figure 4.15. Configuring the credentials for displaying the metrics

Formcentric for FirstSpirit | Developer Manual 16

User: Name of the user who will be granted access to the metrics.

Bcrypt hash: Enter the bcrypt hash of your password here. To generate a bcrypt
hash, you can use the online service https://bcrypt-generator.com, for example.

System metrics activated: Activates or deactivates the endpoint for system metrics.

Usage metrics activated: Activates or deactivates the endpoint for usage metrics.

Monitoring tab (headless)

Formcentric provides you with a range of metrics for monitoring system values that
have relevance for operations like storage usage or processor load for the headless
web app. You can access these by using the following endpoint:

/fc_headless_live/actuator/prometheus

The metrics are supplied in a standardised text format that can be processed by the
Prometheus monitoring system.

You can access information about the application status by using this endpoint:

/fc_headless_live/actuator/health

Access to the metrics is secured with a login (basic authentication). You specify the
associated login credentials on the Monitoring tab.

Figure 4.16. Configuring the credentials for displaying the metrics

Health: Activates or deactivates the actuator endpoint that allows querying the
application's operational status.

Prometheus: Activates or deactivates the actuator endpoint for usage and system
metrics.

User: Name of the user who will be granted access to the endpoints.

https://bcrypt-generator.com

Formcentric for FirstSpirit | Developer Manual 17

Bcrypt hash: Enter the bcrypt hash of your password here. To generate a bcrypt
hash, you can use the online service https://bcrypt-generator.com, for example.

Double opt-in tab

When the double opt-in option is used, the user is sent a mail with a confirmation link.
The link directs the user to the website on which this user completed and submitted
the form. To prevent a situation where the link could be manipulated to redirect the
user to a phishing or spam site, the URL entered must be verified. Link verification is
completed using the URL pattern as configured in this dialog.

Figure 4.17. Configuration of the double opt-in URL pattern

URL pattern: In this input field, enter a URL pattern for each web page on which a
Formcentric form can be embedded. Within the URL pattern, you can use the following
wildcards:

1. ? stands for one character

2. * stands for one or more characters

File upload tab (headless)

Files that a user uploads in a form are cached temporarily on the server until form
submission is complete. You use this configuration dialog to specify the storage loca-
tion and maximum permitted size for file uploads.

For the cached storage, you can either use a local directory or MinIO, or an S3-
compatible object storage service. MinIO is specially designed for the storage of
large, unstructured data and optimised to handle high I/O loads. MinIO also offers
strong security features, including server-side and client-side encryption, and can be

https://bcrypt-generator.com

Formcentric for FirstSpirit | Developer Manual 18

operated both on-prem as well as in the cloud. Deploying MinIO is especially recom-
mended for installations using multiple instances of the headless web application.

You can only use this configuration dialog for configuring the headless web
application.

Figure 4.18. Configuring file uploads

Maximum file size: This parameter specifies the maximum size that an uploaded
file can have. This is used as a security precaution to avoid large files overloading
available server capacity. This setting is a technical limit, so it cannot be overridden
by any editorial rules that apply to uploaded content.

For the Spring MVC web application, the maximum file size can be specified
in the web.xml file.

Maximum request size: This parameter specifies the maximum size that an HTTP
request can have. This applies to the size of the uploaded file(s) as well as all asso-
ciated metadata and headers. As with the maximum file size, this parameter is also
intended to reduce server load and improve performance.

File system: This parameter specifies that the uploaded files are cached on a local
file system or connected network drive.

Directory: If you have selected file system as the cache location, you must specify
the exact storage location here. This should be a path to a directory to which the web
application has read and write access. You can also use the environment variable

Formcentric for FirstSpirit | Developer Manual 19

${java.io.tempdir} in this field if you want to use the temporary directory from the Java
VM.

MinIO Object Storage: This parameter activates the use of MinIO for the cache.
Once activated, the corresponding MinIO parameters must also be configured.

MinIO URL: This parameter specifies the URL at which your MinIO storage service
is reachable. The URL must include the protocol, hostname and port (if applicable).

MinIO Bucket: The MinIO Bucket parameter states the name of the specific
container in your MinIO storage that is used to store the uploaded files. In MinIO, a
bucket is essentially the equivalent of a folder in a conventional file system.

Access Key: The Access Key forms part of your login credentials for the MinIO
storage. This is used together with the Secret Key for MinIO authentication. The
access key should be stored securely and must not be generally accessible.

Secret Key: The Secret Key is the counterpart to the Access Key and is used
together with this key for MinIO authentication. As with the access key, the secret key
must be handled as strictly confidential and kept in a secure location.

Repeat the steps in sections 4.4.1 and 4.4.2 for the Preview web application.

4.5. Analytics Backend web application

4.5.1. Installation

Create another global web application. This is required to store and process your
forms with Formcentric Analytics.

Enter the ID, the name and the context for the web application. Typically, the ID
fc_backend is used for the Analytics Backend application. Close the dialog box by
clicking OK.

Figure 4.19. Adding a new web application

Add a web component to the web application that you have just created by clicking
Add. In the following selection dialog, all of the available web components are
displayed. Select the Formcentric Analytics Backend entry.

Formcentric for FirstSpirit | Developer Manual 20

Figure 4.20. Global web application with installed web component

4.5.2. Configuration

Double-click the Formcentric Analytics Backend web component to open the config-
uration dialog, which contains multiple tabs.

General tab

You use the ‘General’ tab to configure general settings.

Figure 4.21. Configuring the Analytics Backend web application on the
“General” tab

Giving users the opportunity to register for Reporting: Check this check box to
specify that a link to the registration screen should be shown on the Formcentric

Formcentric for FirstSpirit | Developer Manual 21

Reporting interface login screen. On the registration screen, users can register for
access to Formcentric Analytics (see also section 2, „Login and registration”, in the
Formcentric Analytics User Manual).

Mail server tab

You use the ‘Mail server’ tab to configure the mail server that the Analytics Backend
uses to send emails to users.

Figure 4.22. Configuring the Analytics Backend web application on the “Mail
server” tab

Host: Name or IP address of the SMTP mail server.

Port: Port number of the mail server.

User: The account used by Formcentric Analytics to authenticate with the SMTP
server.

Password: Password for the SMTP user.

Sender address: The email address that Formcentric Analytics uses as the sender
when sending email.

Sender name: This property is used to set the name that is shown as the sender for
all mail sent by Formcentric Analytics.

Language: Configure this property to set the language used for sending email.

SMTP authentication: Use this property to activate/deactivate use of the AUTH
command by the mail user.

Formcentric for FirstSpirit | Developer Manual 22

Use TLS encryption: Configure this property if STARTTLS must be used.

Debug: Use this property to activate/deactivate extra debugging output while mail is
being sent. This information includes all of the body content, metadata and headers,
which could contain personal data.

Send activated: Use this property to activate or deactivate the sending of email from
Formcentric Analytics.

Analytics Reporting tab

On the Analytics Reporting tab, you configure the external URL from which the
Reporting interface can be accessed.

Figure 4.23. Configuring the Analytics Backend web application on the
“Analytics Reporting” tab

Reporting web app URL: External URL from which the Reporting web application
is reachable.

Security tab

You use the ‘Security’ tab to enter the login credentials for logging into the Analytics
Backend.

Formcentric for FirstSpirit | Developer Manual 23

Figure 4.24. Configuring the Analytics Backend web application on the
“Security” tab

Backend client secret: Enter your chosen secret here. This will be used by the
Formcentric web application to generate an access token for the Analytics Backend.
The value chosen should be as secure as possible.

Reporting client secret: Enter your chosen password here. This is used for
Reporting application authorisation on the Analytics Backend.

API token validity period: Here, enter the number of days for which a REST API
token will be valid.

Database connection tab

The database connection tab is used to configure the database connection for the
Analytics Backend database. The necessary database tables and indexes are either
automatically created or updated when the application is started.

Formcentric uses the Java Database Connectivity API (JDBC) for accessing the
Backend database. The JDBC drivers required are not included in the Formcentric
FSM module. You therefore need to copy the JDBC driver for the database system
used onto the web server, so that the driver is found in the application's classpath. A
detailed guide to installing and configuring the Backend web application can be found
in the Installation Manual (formcentric_backend_install_en.pdf).

Formcentric for FirstSpirit | Developer Manual 24

Figure 4.25. Configuring the Analytics Backend web application on the
“Database connection” tab

Layer: Select the appropriate driver for your database here.

Host: Enter the name or the IP address of your database server.

Port: Enter the port that the client should use to connect to your database server.

Schema: Enter the database schema that will be used.

User: Enter the username that the Formcentric Analytics Backend uses to log into
your database.

Password: Enter the password for the user here.

Parameters: This field gives you the option of specifying additional connection para-
meters specific to your database. These will be added to the connection URL exactly
as you have entered them. The parameter string must begin with the separator that
is used by the database system deployed (e.g. ?ssl=true).

LDAP tab

In addition to the internal user management functionality offered by Formcentric
Analytics, you can also integrate an external user directory such as LDAP or Active
Directory. You configure the connection and filter settings for your user directory on
the ‘LDAP’ tab.

Formcentric for FirstSpirit | Developer Manual 25

Figure 4.26. Configuring the Analytics Backend web application on the “LDAP”
tab

Directory type: Select the type of external user directory that you want to connect
to here. Formcentric supports LDAP and Active Directory.

URL: URL of the LDAP server.

Username: Username for access to the LDAP server.

Password: Password for access to the LDAP server.

Base DN: The Distinguished Name (DN) of the base directory that is used to hold
the user and group objects (e.g. dc=mydomain,dc=com).

Subdomain DNs: Optional specification of subdomains that hold additional user and
group objects (e.g. dc=subdomain1,dc=my-domain,dc=com). For each additional
subdomain, enter a new row with the fully-qualified DN of the subdomain.

Domain name: Human-readable name of the domain used as a default for the user
during registration.

Formcentric for FirstSpirit | Developer Manual 26

Search base for users: Specifies an object in the directory tree under which the user
search is executed (e.g. ou=people for LDAP or cn=users for Active Directory).

Search filter for users: Specifies an LDAP search filter to apply to the user search
(which is run using the specified search base) (e.g. (uid={0}) for LDAP or (samac-
countname={0}) for Active Directory).

The placeholder {0} is replaced with the username entered before executing the
search.

A general description of the search filter syntax is available from the following
link:http://www.faqs.org/rfcs/rfc2254.html.

User DN pattern: Pattern that is used to generate the distinguished name (DN) for
a user (e.g. uid={0},ou=people).

User email: Name of the user object attribute field in which the email address can
be found. The email address is saved in the Analytics database.

Search base for groups: Specifies an object in the directory tree under which the
group search is executed (e.g. DC=company,DC=com for LDAP or cn=users for
Active Directory).

Search filter for groups: Specifies an LDAP search filter to apply to
the group search (which is run using the specified search base) (e.g.
(&(objectclass=groupOfUniqueNames)) for LDAP or (&(objectclass=group))) for
Active Directory).

Groups import filter: All of the groups for which specific permissions will be granted
within Formcentric Analytics must first be imported into the internal user directory used
by Formcentric Analytics. You can use the group import filter field to specify an LDAP
search filter that will be applied in order to select the LDAP groups to import from the
list of available groups (e.g. (cn=*AnalyticsUsers*)). If you do not enter anything into
this field, then all of the groups identified by the LDAP search filter field search filter
for groups will be imported.

Search filter for user groups: This LDAP search filter is used to identify the groups
in which a user is a member. You only need to specify this parameter if you have
selected the LDAP directory type (e.g. (memberUid={0})). The placeholder {0} is
replaced with the username entered before executing the search.

If you want to install the Analytics Backend web application on the FirstSpirit Jetty
Server, you need to extend the web.xml for the web application to include the context
parameter webAppRootKey. Enter the web application ID as the value.

<context-param>
 <param-name>webAppRootKey</param-name>
 <param-value>mwf_backend</param-value>
</context-param>

http://www.faqs.org/rfcs/rfc2254.html

Formcentric for FirstSpirit | Developer Manual 27

Search tab

Formcentric Analytics uses an external search engine to provide search functionality
for form submissions and a full-text search across all forms. Solr or Elasticsearch
can be used as the search engine. Both search engines are standalone applications
that need to be installed in addition to the Backend application. For search engine
installation and configuration, please consult the documentation for the respective
search engine.

This dialog is used to configure a connection to one of the two search engines.

Please note that Solr and Elasticsearch use different sets of configuration parameters.
The following section describes the specific settings used for each system.

The following configuration is required to use Solr.

Figure 4.27. Configuring the Solr search engine on the “Search” tab

Search engine: Select Solr to activate the configuration for this search engine.

Server URL: Enter the Solr server URL here.

Username: Enter the username that will be used to access Solr. Leave this field
empty if your Solr installation does not require a username.

Password: Enter the password that will be used to access Solr. Leave this field
empty if your Solr installation does not require a password.

Collection: Enter the name of the collection you have set up here.

Feeder activated: Activate or deactivate the feeder that is used to populate the
search index. Typically, you will only need to have the search index populated by one
Backend application instance.

Feeder ID: Assign a unique ID to the feeder here. This ID can be an arbitrary char-
acter string. If multiple Backend applications are being run in parallel, the feeder IDs
for the various Backend applications must be unique.

Formcentric for FirstSpirit | Developer Manual 28

Instead of running Solr as a standalone application, you also have the option
of installing Solr as a global FirstSpirit web app. Formcentric will provide you
with a separate FirstSpirit module for this purpose. To install this module,
please see the installation guide at Section 4.7, “Solr web application”.

In this scenario, enter the URL of the global web app into the Server URL
field.

For production environments, we recommend operating the search
engine outside FirstSpirit.

Configure the following settings when using Elasticsearch.

Figure 4.28. Configuring the Elasticsearch search engine on the “Search” tab

Search engine: Select Elasticsearch to activate the configuration for this search
engine.

Server URIs: Enter the URIs for the Elasticsearch server here. If you are using
multiple Elasticsearch instances, the Formcentric Analytics Backend can also
communicate with multiple instances. In this case, enter the URIs separated by
commas (,).

Username: Enter the username that will be used to access Elasticsearch here.
Leave this field empty if your Elasticsearch installation does not require a username.

Password: Enter the password that will be used to access Elasticsearch. Leave this
field empty if your Elasticsearch installation does not require a password.

Index: Enter the name of the index you have set up here.

Feeder activated: Activate or deactivate the feeder that is used to populate the
search index. Typically, you will only need to have the search index populated by one
Backend application instance.

Formcentric for FirstSpirit | Developer Manual 29

Feeder ID: Assign a unique ID to the feeder here. This ID can be an arbitrary char-
acter string. If multiple Backend applications are being run in parallel, the feeder IDs
for the various Backend applications must be unique.

Repeat the steps in sections 4.5.1 and 4.5.2 if you want to use separate
instances of the Analytics Backend for the Preview and Live environments.

4.6. Analytics Reporting web application

4.6.1. Installation
Create another global web application for the Formcentric Analytics Reporting appli-
cation.

Enter the ID, the name and the context for the web application. Typically, the ID
fc_reporting is used for the Reporting web application. Close the dialog box by clicking
OK.

Figure 4.29. Adding the Reporting web application

Add a web component to the web application that you have just created by clicking
Add. In the following selection dialog, all of the available web components are
displayed. Now select the Formcentric Analytics Reporting entry.

Figure 4.30. Global web application with installed web component

Formcentric for FirstSpirit | Developer Manual 30

4.6.2. Configuration

Double-click the Formcentric Analytics Reporting web component to open the config-
uration dialog.

Figure 4.31. Configuring the web application on the “Configuration” tab

Analytics Backend URL: URL for accessing the Formcentric Analytics Backend. If
you are using a separate Backend for Live and Preview in your environment, then
take care to ensure that you specify the correct URL here.

Reporting client secret: Enter the password used to log into the Analytics Backend
here. This must match the Reporting client secret that you issued during the configu-
ration of the Analytics Backend (see the section called “Security tab”).

If you want to install the Reporting web application on the FirstSpirit Jetty Server, you
need to extend the web.xml for the web application to include the context parameter
webAppRootKey. Enter the web application ID as the value.

<context-param>
 <param-name>webAppRootKey</param-name>
 <param-value>fc_reporting</param-value>
</context-param>

Repeat the steps in sections 4.6.1 and 4.6.2 if you want to use separate
instances of the Reporting application for the Preview and Live environments.

4.7. Solr web application

Formcentric provides the Solr search engine as a separate FirstSpirit module for test
and development purposes. This can be downloaded from our FTP server.

You install the solr-module-1.4.0.fsm module file using FirstSpirit's Server and Project
Configuration.

Formcentric for FirstSpirit | Developer Manual 31

Figure 4.32. Module overview

As a final step, create another global web application.

Enter the ID, the name and the context for the web application. Typically, the ID fc_solr
is used for the Solr application. Close the dialog box by clicking OK.

Figure 4.33. Adding a new web application

Add the following web components to the web application that you have just created
by clicking Add. In the following selection dialog, all of the available web components
are displayed. Select the entries Solr WebApp and Formcentric Webforms Analytics
Solr Core.

Figure 4.34. Solr web application with installed web components

Formcentric for FirstSpirit | Developer Manual 32

Install the web application on the web server.

4.8. Formcentric project components

Formcentric includes two project components, which you can install and configure as
described below.

4.8.1. Project resources

To integrate the form extension into a new or existing project, you will need some addi-
tional resources (JavaScripts, paragraph style sheets and CSS). These are bundled
together as a separate project component, which you can add to your project with the
help of the Project Configuration screen.

To do so, open the Project Configuration screen by double-clicking your project in
the Project Overview, and select the Project components option from the menu on
the left. Click the Add button to open up a selection dialog box that displays all of the
project components installed on the server. Select the Formcentric resources entry.

Figure 4.35. Project components in the project properties

Following a successful installation, the project is now extended by the following
elements:

• Paragraph style sheets: The new style sheets Form and Headless form have
been created in the project’s paragraph style sheets.

Formcentric for FirstSpirit | Developer Manual 33

The paragraph style sheets use the default HTML output channel to
embed the form into the page. If your project does not use this output
channel, then you must make the changes described in Section 5.1.3,
“Internet (HTML) tab” manually in the output channel that you are using.

• Scripts: The Scripts area in Template Management has now been extended by
the Formcentric folder, which contains various generation scripts.

• Media: Media Management now contains the Formcentric folder. This folder
contains the required JavaScripts and style sheets in their original and minified
forms.

When the module is updated to a new version, the project component also
updates itself automatically. In the process, the system must also replace
the section templates (see Section 5.1, “Paragraph style sheet”) with new
versions. This leads to a situation where you can no longer edit existing forms
following the update, since the system can no longer find the associated
section templates. To avoid this problem, you should work with copies of the
section templates contained in the project component.

Please note: You can use the fix_ReferenceNotFoundException script to
repair forms whose paragraph style sheet has been deleted.

4.8.2. Project configuration

To create URLs for FirstSpirit content that is referenced from forms, Formcentric uses
the URL creator provided in the generation context by default. If you want to use a
different URL creator for this purpose, then you can specify this creator in the Form-
centric project configuration.

To do this, install the Formcentric Project Configuration project component. Then
open the configuration dialog for the installed component and select the URL factory
that you want to use from the URL factory or Preview URL factory selection field. As
a last step, enter the address of the web server from where the respective application
can be reached externally in Prefix for absolute paths or Prefix for absolute preview
paths.

Formcentric for FirstSpirit | Developer Manual 34

Figure 4.36. Configuring the URL factory

If this project component is not installed or the URL creator has not been
configured, then the URL creator from the generation context will continue
to be used.

4.9. Configuring the publication tasks

You need to perform the configuration of the publication tasks as described below
only if the PDF template documents should be loaded from a local directory within the
Formcentric web app (see also the section called “PDF export tab”).

For the PDF action to work properly, you need to publish your PDF templates to the
Formcentric web application. This publication is necessary both for the production
web application and for the Preview. The external program rsync is used for the publi-
cation.

For information about installing and configuring rsync in conjunction with FirstSpirit,
please see section 10 of the FirstSpirit “Administrator Documentation”.

A BeanShell script is provided for publishing the PDF template. The script is supplied
to you as part of the Formcentric scope of delivery.

Open the Project Configuration screen by double-clicking your project in the Project
Overview, and select the Action templates option from the menu on the left. Click the
Add button to open up a selection dialog box that displays various activities. Select
the Execute script entry.

Formcentric for FirstSpirit | Developer Manual 35

Figure 4.37. Creating a schedule template in Server Manager

In the Script dialog box that then appears, enter the name “Formcentric RSync Deploy-
ment”.

You can use a different name, but you will then have to modify the script in
the Java client.

Copy the contents of the script provided (ext-rsync-ssh.bsh) into the input field below.

Figure 4.38. PDF action deployment script

Formcentric for FirstSpirit | Developer Manual 36

As a next step, now configure the following parameters for your Preview or Delivery
server, as described in section 10.5 of the FirstSpirit “Administrator Documentation”.

Parameter Description

rsync Path to the rsync program (only necessary on Windows systems).
Example: C:\cygwin\bin\rsync.exe

runlocal This parameter is used to specify whether publication is made to a
local directory (true) or to a remote server (false).

subfolder Path to a directory in Media Management in which the PDF templates
are to be found.
Example: media/pdf

webpath Path to the directory in which the PDF templates should be stored
following publication.

Example: /opt/firstspirit5/web/fc_preview/WEB-INF/pdf

Ensure that this directory is identical to that specified in the
module configuration for the PDF action.

The default value is WEB-INF/pdf.

The following parameters only need to be specified if publication is to take place to
a remote server (runlocal=false).

Parameter Description

webuser Username that the system uses to log in to the remote server.

webhost Hostname or IP address of the remote server.

ssh Path to the ssh program.

Example: C:\cygwin\bin\ssh.exe

privkey On Windows systems, this parameter can be used to specify the full
path to the SSH key file for the user configured by the webuser para-
meter.

Example: c:\User\fs5\.ssh\id_rsa

Formcentric for FirstSpirit | Developer Manual 37

Figure 4.39. Sample configuration for the PDF action deployment script on a
Windows server

As a final step, save the schedule template.

Use the new schedule template to create a new publication schedule that the editorial
staff can use to transfer the PDF templates to the Preview web app (fc_preview) (see
also section 3.4.3 in the Formcentric User Manual).

In order for the PDF templates to also be transferred with each deployment, you
should include the schedule template in all relevant publication schedules. For further
details of schedules and FirstSpirit schedule management, please consult section 7.5
of the FirstSpirit “Administrator Documentation”.

4.10. Password encryption
In the default configuration, login credentials for databases, mail servers, etc.
are stored in various configuration files in plaintext. In the event of a security
breach affecting the server, attackers would gain access to valid login credentials.
For this reason, you are given the option of storing passwords in an encrypted
format. In this case, passwords are decrypted only when the application starts,
using the stored encryption password. You must ensure the password used for
the encryption is stored in an environment variable before the Formcentric web
applications start. The default environment variable used by Formcentric for this is
MWF_ENCRYPTION_PASSWORD.

export MWF_ENCRYPTION_PASSWORD=my-encryption-password

Within the Formcentric configuration interface, you have the option of encrypting the
password that is entered for each password input field.

Figure 4.40. Password field with encryption functionality

Formcentric for FirstSpirit | Developer Manual 38

To do so, click the lock symbol within the field. This opens a dialog box in which you
enter an encryption password with which the password is then encrypted. Please note:
you must use the encryption password stored in the system for all of the passwords
that are to be encrypted. No check is made to confirm that the password entered in
the dialog matches the stored password.

Figure 4.41. Dialog for password encryption/decryption

If you are not using the FirstSpirit administration interface to install Formcentric, you
also have the alternative option of using a command line program to encrypt and
decrypt your passwords. After encrypting passwords in this way, they must then be
entered manually into the corresponding configuration file.

Download the program from the Formcentric Maven repository by executing the
following command at the command line. You can obtain the necessary login creden-
tials by contacting our Helpdesk (support@formcentric.com).

mvn org.apache.maven.plugins:maven-dependency-plugin:3.0.2:copy \
-Dartifact=com.monday.webforms:encryption-cli:1.0:jar \
-DoutputDirectory=.

To encrypt a password, enter the following command at the command line:

java -jar encryption-cli-1.0.jar \
 -p '<encryption-password>' -e '<password>'

Please note that the parameters must be entered in single quotation marks. You can
enter the following command line parameters when starting:

Parameter Description

-p encryption-password The password to be used for encryption or decryption.

-d Decrypt password

-e Encrypt password

-? Show help

Formcentric for FirstSpirit | Developer Manual 39

5. Extending the FirstSpirit project
After installing the project component, you need to make a number of manual changes
to the imported resources and to existing page templates.

5.1. Paragraph style sheet
At the content level, the system uses a paragraph style sheet to display forms. You
can modify this to suit your precise requirements as described below. Out of the
box, Formcentric ships with two paragraph style sheets – the paragraph style sheet
Headless form is envisaged for use with the headless web application, while the para-
graph style sheet Form is envisaged for use with the Spring MVC web application. In
the default setup, the only difference between the two paragraph style sheets is the
Internet (HTML) section.

5.1.1. Properties tab

One of the configuration options on the Properties tab is the option to set default
values for new forms. Click the Default values button to open the Form Editor in a
new window. Here, you can create a form for each project language: from now on,
the system uses this form as the template for newly-created forms.

5.1.2. Form tab

For forms, you use the input component FORMCENTRIC_FORMEDITOR. You
configure this on the Form tab. For a detailed description of the compo-
nent, please consult the user manuals (formcentric_contencreator_en.pdf and
formcentric_sitearchitect_en.pdf).

<?xml version="1.0" encoding="UTF-8"?>
<FORMCENTRIC_FORMEDITOR name="form" expandOnStartup="yes" hFill="yes"
 useLanguages="yes">
 <DATASOURCES>
 <DATASOURCE name="Countries" type="comboBox">
 <LANGINFOS>
 <LANGINFO lang="*" label="English country names"/>
 <LANGINFO lang="DE" label="Englische Ländernamen"/>
 </LANGINFOS>
 </DATASOURCE>
 <DATASOURCE name="Laender" type="comboBox">
 <LANGINFOS>
 <LANGINFO lang="*" label="German country names"/>
 <LANGINFO lang="DE" label="Deutsche Ländernamen"/>
 </LANGINFOS>
 </DATASOURCE>
 <DATASOURCE name="Countries" type="inputField">
 <LANGINFOS>
 <LANGINFO lang="*" label="English country names"/>
 <LANGINFO lang="DE" label="Englische Ländernamen"/>
 </LANGINFOS>

Formcentric for FirstSpirit | Developer Manual 40

 </DATASOURCE>
 <DATASOURCE name="Laender" type="inputField">
 <LANGINFOS>
 <LANGINFO lang="*" label="German country names"/>
 <LANGINFO lang="DE" label="Deutsche Ländernamen"/>
 </LANGINFOS>
 </DATASOURCE>
 ...
 </DATASOURCES>
 <FILE_TYPES>
 <FILE_TYPE name="bmp">
 <LANGINFOS>
 <LANGINFO lang="*" label="Windows-Bitmap (*.bmp)"/>
 </LANGINFOS>
 </FILE_TYPE>
 <FILE_TYPE name="gif">
 <LANGINFOS>
 <LANGINFO lang="*" label="CompuServe-Bitmap (*.gif)"/>
 </LANGINFOS>
 </FILE_TYPE>
 <FILE_TYPE name="jpeg">
 <LANGINFOS>
 <LANGINFO lang="*" label="JPEG Image (*.jpeg)"/>
 <LANGINFO lang="DE" label="JPEG Bild (*.jpeg)"/>
 </LANGINFOS>
 </FILE_TYPE>
 ...
 </FILE_TYPES>
 <FORM_LAYOUTS>
 <FORM_LAYOUT name="mwf-separator">
 <LANGINFOS>
 <LANGINFO lang="*" label="Horitzontal seperator"/>
 <LANGINFO lang="DE" label="Horizontale Trennlinie"/>
 </LANGINFOS>
 </FORM_LAYOUT>
 </FORM_LAYOUTS>
 <FORM_VARIABLES>
 <FORM_VARIABLE name="date"/>
 <FORM_VARIABLE name="time"/>
 <FORM_VARIABLE name="url"/>
 <FORM_VARIABLE name="language"/>
 <FORM_VARIABLE name="ip"/>
 <FORM_VARIABLE name="userAgent"/>
 <FORM_VARIABLE name="referer"/>
 </FORM_VARIABLES>
 <INPUT_STYLE_CLASSES>
 <INPUT_STYLE_CLASS name="mwf-s" type="inputField">
 <LANGINFOS>
 <LANGINFO lang="*" label="Small width (mwf-s)"/>
 <LANGINFO lang="DE" label="Kleine Breite (mwf-s)"/>
 </LANGINFOS>
 </INPUT_STYLE_CLASS>
 <INPUT_STYLE_CLASS name="mwf-m" type="inputField">
 <LANGINFOS>
 <LANGINFO lang="*" label="Medium width (mwf-m)"/>
 <LANGINFO lang="DE" label="Mittlere Breite (mwf-m)"/>

Formcentric for FirstSpirit | Developer Manual 41

 </LANGINFOS>
 </INPUT_STYLE_CLASS>
 <INPUT_STYLE_CLASS name="mwf-l" type="inputField">
 <LANGINFOS>
 <LANGINFO lang="*" label="Large width (mwf-l)"/>
 <LANGINFO lang="DE" label="Große Breite (mwf-l)"/>
 </LANGINFOS>
 </INPUT_STYLE_CLASS>
 <INPUT_STYLE_CLASS name="mwf-s" type="checkBoxGroup">
 <LANGINFOS>
 <LANGINFO lang="*" label="Small width (mwf-s)"/>
 <LANGINFO lang="DE" label="Kleine Breite (mwf-s)"/>
 </LANGINFOS>
 </INPUT_STYLE_CLASS>
 <INPUT_STYLE_CLASS name="mwf-m" type="checkBoxGroup">
 <LANGINFOS>
 <LANGINFO lang="*" label="Medium width (mwf-m)"/>
 <LANGINFO lang="DE" label="Mittlere Breite (mwf-m)"/>
 </LANGINFOS>
 </INPUT_STYLE_CLASS>
 ...
 </INPUT_STYLE_CLASSES>
 <LANGINFOS>
 <LANGINFO lang="*" label="Form"/>
 <LANGINFO lang="DE" label="Formular"/>
 </LANGINFOS>
 <MAIL_ACTION>
 <MAIL_FORMATS>
 <MAIL_FORMAT name="text">
 <LANGINFOS>
 <LANGINFO lang="*" label="Plain Text"/>
 <LANGINFO lang="DE" label="Text" />
 </LANGINFOS>
 </MAIL_FORMAT>
 <MAIL_FORMAT name="html">
 <LANGINFOS>
 <LANGINFO lang="*" label="HTML"/>
 <LANGINFO lang="DE" label="HTML"/>
 </LANGINFOS>
 </MAIL_FORMAT>
 <MAIL_FORMAT name="freetext">
 <LANGINFOS>
 <LANGINFO lang="*" label="Freemarker (Plain Text)"/>
 <LANGINFO lang="DE" label="Freemarker (Text)"/>
 </LANGINFOS>
 </MAIL_FORMAT>
 <MAIL_FORMAT name="freehtml">
 <LANGINFOS>
 <LANGINFO lang="*" label="Freemarker (HTML)"/>
 <LANGINFO lang="DE" label="Freemarker (HTML)"/>
 </LANGINFOS>
 </MAIL_FORMAT>
 </MAIL_FORMATS>
 </MAIL_ACTION>
 <PDF_ACTION templateFolder="pdf,pdf2"/>
 <PHONE_NUMBER_TYPES>

Formcentric for FirstSpirit | Developer Manual 42

 <PHONE_NUMBER_TYPE name="FIXED_LINE">
 <LANGINFOS>
 <LANGINFO lang="*" label="Fixed-line"/>
 <LANGINFO lang="DE" label="Festnetz"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 <PHONE_NUMBER_TYPE name="MOBILE">
 <LANGINFOS>
 <LANGINFO lang="*" label="Mobile"/>
 <LANGINFO lang="DE" label="Mobil"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 <PHONE_NUMBER_TYPE name="FIXED_LINE_OR_MOBILE">
 <LANGINFOS>
 <LANGINFO lang="*" label="Fixed-line or Mobile"/>
 <LANGINFO lang="DE" label="Festnetz oder Mobil"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 <PHONE_NUMBER_TYPE name="TOLL_FREE">
 <LANGINFOS>
 <LANGINFO lang="*" label="Toll-free"/>
 <LANGINFO lang="DE" label="Gebührenfrei"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 <PHONE_NUMBER_TYPE name="PREMIUM_RATE">
 <LANGINFOS>
 <LANGINFO lang="*" label="Premium Rate"/>
 <LANGINFO lang="DE" label="Premium-Tarif"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 <PHONE_NUMBER_TYPE name="SHARED_COST">
 <LANGINFOS>
 <LANGINFO lang="*" label="Shared Cost"/>
 <LANGINFO lang="DE" label="geteilte Kosten"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 <PHONE_NUMBER_TYPE name="VOIP">
 <LANGINFOS>
 <LANGINFO lang="*" label="Voice over IP"/>
 <LANGINFO lang="DE" label="Voice-over-IP"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 <PHONE_NUMBER_TYPE name="PERSONAL_NUMBER">
 <LANGINFOS>
 <LANGINFO lang="*" label="Personal Numbers"/>
 <LANGINFO lang="DE" label="Persönliche Nummer"/>
 </LANGINFOS>
 </PHONE_NUMBER_TYPE>
 ...
 </PHONE_NUMBER_TYPES>
 <REDIRECT_ACTION httpsOnly="no" supportDynamicUrls="yes">
 <ALLOWED_HOSTS>
 <ALLOWED_HOST name="*"/>
 </ALLOWED_HOSTS>
 </REDIRECT_ACTION>
 <REGEX_PATTERNS>

Formcentric for FirstSpirit | Developer Manual 43

 <REGEX_PATTERN name="^[0-9]*$">
 <LANGINFOS>
 <LANGINFO lang="*" label="Ciphers"/>
 <LANGINFO lang="DE" label="Nummern"/>
 </LANGINFOS>
 </REGEX_PATTERN>
 <REGEX_PATTERN name="^[0-9]{3,7}$">
 <LANGINFOS>
 <LANGINFO lang="*" label="3-7 ciphers"/>
 <LANGINFO lang="DE" label="3-7 Nummern"/>
 </LANGINFOS>
 </REGEX_PATTERN>
 <WEBEDIT_MACROS>
 <WEBEDIT_MACRO>{"name":"File upload", ... }</WEBEDIT_MACRO>
 </WEBEDIT_MACROS>

 ...
 </REGEX_PATTERNS>
</FORMCENTRIC_FORMEDITOR>

Consult the following section for a description of the various tags and attributes that
you can use when configuring the Form Editor.

FORMCENTRIC_FORMEDITOR

Input component for forms (Form Editor)

Attribute Description

name You use the name attribute to give the Form Editor a vari-
able name. You can then use this name in the templates in
order to output the encrypted presentation text with the help of
$CMS_VALUE()$ (see Section 5.1.3, “Internet (HTML) tab”).

expandOnStartup You use the expandOnStartup parameter to specify whether or
not the form elements are expanded in the tree view when the
Editor is opened or the form is saved.

excludeElements You use the excludeElements parameter to hide form element
types completely in the Form Editor. For the parameter value,
enter a comma-separated list containing the names of the
element types to hide. If the use of captchas and page breaks
should be prohibited, for example, then you would enter the value
captcha,pageBreak.

You can select from the following element types:

button, checkBoxGroup, comboBox, condition, fileUpload,
hiddenField, shortText, emailField, numberField, dateField,
phoneField, inputField, layout, fieldSet, pageBreak, paragraph,
passwordField, radioGroup, calculatedValue, pageCondition,
summary, textArea, captcha, sequenceAction, mailAction,

Formcentric for FirstSpirit | Developer Manual 44

Attribute Description
dataSourceAction, datastoreAction, redirectAction, mediaStore-
Action, pdfAction, webhookAction

hFill The Form Editor is displayed with a predefined width. If you want
to use the full width available to you from your display, configure
the hFill parameter with the value YES.

Due to the large amount of space required by this input compo-
nent, the setting YES is recommended.

useLanguages You use the useLanguages parameter to specify whether or not
the Form Editor should save different form definitions for the
various languages (multilingual content management).

You can also specify the standard parameters hidden, label, noBreak, preset, conver-
tEntities and allowEmpty. For a detailed description of this parameter, please consult
the FirstSpirit documentation.

FORM_VARIABLES

You use the FORM_VARIABLES tag to define variables that a form author can then
use when pre-setting values for input fields in the Default value field for single- and
multi-line text input boxes. For example, the form author can set the current date
(variable date) as the default value for an input field.

The standard variables date, time, serverDate, serverTime, clientDate, clientTime,
timezone, url, language, ip, userAgent and referer are defined and can be used.
In addition, you can also define your own, custom variables. For further details, see
Section 6.5.8, “Adding variables for pre-filling form fields”.

Figure 5.1. Autocomplete list with variables for a single-line text field

FORM_VARIABLE

You use the FORM_VARIABLE tag to enter the name of a form variable.

Attribute Description

name Name of the form variable.

Formcentric for FirstSpirit | Developer Manual 45

FORM_LAYOUTS

The FORM_LAYOUTS tag enables the definition of a list of layout names that the
form author can then later select via the layout element.

FORM_LAYOUT

You use the FORM_LAYOUT tag to enter the name of a layout.

Attribute Description

name Name of the layout.

An optional, language-dependent label for the layout can be configured by specifying
a subordinate <LANGINFOS> tag (see the section called “LANGINFOS”).

FIELD_WIDTHS

The FIELD_WIDTHS tag lets you define a list of CSS classes from which the form
author can make a selection later when creating a form element, so as to specify the
width of the form element.

Out of the box, the CSS classes mwf-s, mwf-m and mwf-l are already included: these
can be used to influence the width of input elements on the form page.

FIELD_WIDTH

Attribute Description

name Name of the CSS class.

type Form element type for which the CSS class should be selectable
by the form author. As standard, you can configure CSS classes
for the following element types:
inputField, textArea, passwordField, checkBoxGroup, comboBox,
paragraph, radioGroup, shortText, emailField, numberField, date-
Field, phoneField, fileUpload, pageBreak.

An optional, language-dependent label for the CSS class can be configured by spec-
ifying a subordinate <LANGINFOS> tag (see the section called “LANGINFOS”).

INPUT_STYLE_CLASSES

The INPUT_STYLE_CLASSES tag lets you define a list of CSS classes, from which
the form author can make a selection later when creating a form element.

INPUT_STYLE_CLASS

Attribute Description

name Name of the CSS class.

Formcentric for FirstSpirit | Developer Manual 46

Attribute Description

type Form element type for which the CSS class should be selectable
by the form author. As standard, you can configure CSS classes
for the following element types:
form, inputField, textArea, passwordField, checkBoxGroup,
comboBox, paragraph, radioGroup, shortText, emailField,
numberField, dateField, phoneField, summary, fieldSet fileU-
pload, pageBreak.

An optional, language-dependent label for the CSS class can be configured by spec-
ifying a subordinate <LANGINFOS> tag (see the section called “LANGINFOS”).

DATASOURCES

You use the DATASOURCES tag to define dynamic data sources (REST services),
which the form author can then select in order to fill a form element with values (see
Section 6.5.9, “Implementing a REST service”).

DATASOURCE

Attribute Description

name Name of the REST service, as you entered it in the service
mapping for the REST controller.

type Form element type that the form author can use to select the
data source. As standard, you can configure data sources only for
drop-down lists of the types comboBox, radioGroup, checkBox-
Group, inputField and hiddenField.

An optional, language-dependent label for the data source can be configured by spec-
ifying a subordinate <LANGINFOS> tag (see the section called “LANGINFOS”).

FILE_TYPES

You use the FILE_TYPES tag to define file types that the form author can select for
the file validator.

FILE_TYPE

Attribute Description

name Name of the file type, as entered into the MIME type mapping for
the file validator. As standard, you can define the following file
types:
bmp, gif, jpeg, png, wmf, tif, mp3, wav, mp4, avi, mpg, wma, mov,
asf, wmv, zip, gz, tar, gtar, 7z, rar, arj, bz, bz2, doc, ppt, pptx, xls,
xlsx, docx, mpx, wps, pdf, rtf, flv, txt, dvi, xml, js, css, xhtml, html,
svg, psd, rpm, indd, inx

Formcentric for FirstSpirit | Developer Manual 47

An optional, language-dependent label for the file type can be configured by specifying
a subordinate <LANGINFOS> tag (see the section called “LANGINFOS”).

PHONE_NUMBER_TYPES

You use the PHONE_NUMBER_TYPES tag to define phone number types that the
form author can select when using the phone number validator.

PHONE_NUMBER_TYPE

Attribute Description

name Name of the phone number type, as entered into the MIME type
mapping for the phone number validator. In the default setup, you
can configure the following phone number types:
FIXED_LINE, MOBILE, FIXED_LINE_OR_MOBILE,
TOLL_FREE, PREMIUM_RATE, SHARED_COST, VOIP,
PERSONAL_NUMBER, UAN, VOICEMAIL, UNKNOWN.

An optional, language-dependent label for the phone number type can be config-
ured by specifying a subordinate <LANGINFOS> tag (see the section called
“LANGINFOS”).

REGEX_PATTERNS

You use the REGEX_PATTERNS tag to define regular expressions that the form
author can select when using the regular expression validator.

REGEX_PATTERN

Attribute Description

name The regular expression that you are now adding to the list of exam-
ples in the regular expression validator.

An optional, language-dependent label for the regular expression can be config-
ured by specifying a subordinate <LANGINFOS> tag (see the section called
“LANGINFOS”).

MAIL_ACTION

You use this tag to configure the mail action dialog for editorial staff.

MAIL_FORMATS

The MAIL_FORMATS tag enables you to define a list of format identifiers that the
form author can subsequently use within the mail action in order to specify the format
of the email sent by the system. If you do not specify any format identifiers, then the
default formats of html and text are offered for selection.

Formcentric for FirstSpirit | Developer Manual 48

MAIL_FORMAT

Attribute Description

name Name of the email format, identical to the entry in bodyRender-
erMapping that you have made for the mail action (see also the
section called “formcentric-actions.xml”).

An optional, language-dependent label for the email format can be configured by
specifying a subordinate <LANGINFOS> tag (see the section called “LANGINFOS”).

PDF_ACTION

You use this tag to configure the PDF action dialog for editorial staff.

Attribute Description

templateFolder All PDF documents that are to be used as a template for the PDF
action must be stored in a master folder within Media Manage-
ment. Enter the reference name of the folder here or use a
comma-separated list for multiple folders.

In the PDF action dialog for editorial staff, selection is restricted
to PDF documents in these folders.

REDIRECT_ACTION

You use this tag to configure the redirect action dialog for editorial staff.

Attribute Description

httpsOnly You use the httpsOnly parameter to specify that only
secure URLs can be entered as the redirection target.

supportDynamicUrls You use the supportDynamicUrls parameter to specify
whether or not the redirect URL variables can use the
${field name} format.

ALLOWED_HOSTS

This tag gives you the option of restricting the possible redirection targets to certain
addresses (hosts).

ALLOWED_HOST

Specification of an allowed host.

If, for example, you want to ensure that only your own company webpages can be
entered as the redirection target, then you should enter your company’s domain name
here. You may use wildcards such as *.your-domain.com to allow all subdomains
(e.g., shop.your-domain.com or login.your-domain.com).

Formcentric for FirstSpirit | Developer Manual 49

Important: The pattern *.your-domain.com will only match subdomains. The root
domain your-domain.com itself is not included. If both the root domain and its subdo-
mains should be allowed, you must add your-domain.com and *.your-domain.com as
separate entries.

Attribute Description

name Name of an allowed host.

LANGINFOS

You use this tag to specify language-dependent labels for the attribute name in
the parent tag; these labels are displayed in the form editing interface. This applies
to the tags DATASOURCE, FILE_TYPE, INPUT_STYLE_CLASS, MAIL_FORMAT,
FORM_LAYOUT, PHONE_NUMBER_TYPE and REGEX_PATTERN.

LANGINFO

This tag is used to set the label for a specific language.

Attribute Description

lang Language code for the display language (e.g. DE for German, EN
for English).

label Text of the label in the specified language

description You can use the description parameter to specify an optional
description that is used to show a tooltip (on mouseover).

5.1.3. Internet (HTML) tab

Form presentation is normally dynamic. As a result – and depending on the input
made by the user, for example – individual form pages or form fields can be shown or
hidden on the fly. For this reason, the HTML form output is created either server-side
by the web application or browser-side by a React application (Formcentric client) and
is then dynamically embedded into the respective page. For the server-side approach,
the web app component is accessed by using an asynchronous JavaScript request
(AJAX). The paragraph style sheet generates only the JavaScript for embedding the
AJAX response. With the browser-side approach, however, the Formcentric Client is
executed in the browser itself. In this case, the paragraph style sheet generates the
JavaScript for embedding the client.

When using the Spring MVC web application, the required JavaScript libraries and
CSS styles must be loaded in the page template (see Section 5.6, “Page template”).
When using the headless web application, these are referenced in the paragraph style
sheet and loaded by the Formcentric client.

The following example shows the output template for use with the Spring MVC web
application:

Formcentric for FirstSpirit | Developer Manual 50

$CMS_RENDER(script: "formcentric_encrypted_form",
 form: form.XML)$
$CMS_RENDER(script: "formcentric_encrypted_refs",
 ids: form.internalReferences)$
$CMS_RENDER(script: "formcentric_login_ticket")$

<!-- Formcentric -->
<div class="clearfix module"$CMS_VALUE(editorId())$>
 <div class="mwf-form">
 <div id="ajaxreplace$CMS_VALUE(form.uid)$">
 <script type="text/javascript">
 jQuery(function() {
 jQuery.mwfAjaxReplace({
 uid: '$CMS_VALUE(form.uid)$',
 selector: '#ajaxreplace$CMS_VALUE(form.uid)$',
 url: '$CMS_RENDER(script:"formcentric_url")$/servlet/form',
 appendUrlVars: true,
 data: {
 _view: 'webform',
 _fd: '$CMS_VALUE(fc_encryptedForm)$',
 _refs: '$CMS_VALUE(fc_encryptedRefs)$',
 _lang: '$CMS_VALUE(form.lang())$',
 _ticket: '$CMS_VALUE(fc_loginTicket)$'
 }
 });
 });
 </script>
 </div>
 </div>
</div>

On each form submit, the DIV tag with the ID ajaxreplace<form ID> is replaced by
the AJAX response.

For the headless web application, the output template is presented as follows:

$CMS_RENDER(script: "formcentric_encrypted_form",
 form: form.XML)$
$CMS_RENDER(script: "formcentric_encrypted_refs",
 ids: form.internalReferences)$
$CMS_RENDER(script: "formcentric_login_ticket")$

<!-- Formcentric -->
<div class="clearfix module"$CMS_VALUE(editorId())$>
 <div data-fc-id="$CMS_VALUE(form.uid)$"
 data-fc-formapp-url="$CMS_REF(media:"formapp")$"
 data-fc-theme-url="$CMS_REF(media:"formcentric_headless_css")$"
 data-fc-template-url="$CMS_REF(media:"formcentric_templates_js")$"
 data-fc-theme-variable-url="$CMS_REF(media:"formcentric_json")$"
 data-fc-form-definition="$CMS_VALUE(fc_encryptedForm)$"
 data-fc-refs="$CMS_VALUE(fc_encryptedRefs)$"
 data-fc-params='{"ticket": "$CMS_VALUE(fc_loginTicket)$"}'
 data-fc-data-url='$CMS_RENDER(script:"formcentric_url")$'
 ></div>
</div>

Formcentric for FirstSpirit | Developer Manual 51

The Formcentric client is configured using data attributes:

data-fc-id: Specifies the form ID.

data-fc-formapp-url: Specifies the URL for the Formcentric client’s JavaScript file.

data-fc-theme-url: The URL to the application’s CSS styles.

data-fc-template-url: The URL to the JavaScript file for the form templates.

data-fc-theme-variable-url: The URL to the JSON file with the theme variables.

data-fc-form-definition: The encrypted form definition.

data-fc-refs: The form’s encrypted references.

data-fc-params: Additional parameters that will be passed to the headless applica-
tion as a JSON object. For the headless application’s login to the Preview, a login
ticket is usually passed here.

data-fc-data-url: The URL of the headless web application.

5.2. formcentric_headless_url script
The system uses the generation script formcentric_headless_url within the paragraph
style sheet to output the context paths of the global headless web applications (see
Section 4.1, “Installing the Formcentric module”).

Take care to ensure that the values of the script variables previewWebAppId and
liveWebAppId contain the IDs of the global web applications. If necessary, adjust
these to match.

//!Beanshell
previewWebAppId = "fc_headless_preview";
liveWebAppId = "fc_headless_live";

agent = context.requestSpecialist(
 de.espirit.firstspirit.agency.LegacyModuleAgent.TYPE);

url = context.isPreview() ? agent.getGlobalWebAppUrl(previewWebAppId) :
 agent.getGlobalWebAppUrl(liveWebAppId);

return url;

For the context path output of the Spring MVC web application, please use
the generation script formcentric_url, which uses the same structure.

5.3. formcentric_encrypted_form script
The form definition must be encrypted before being passed to the Formcentric web
app. The formcentric_encrypted_form script calls an executable that encrypts the form
definition and stores it in the variable fc_encryptedForm in the page context. When

Formcentric for FirstSpirit | Developer Manual 52

the script is called, the unencrypted form definition must be passed in the form script
parameter.

$CMS_RENDER(script: "formcentric_encrypted_form", form: form.XML)$

5.4. formcentric_encrypted_refs script

References within the form definition to FirstSpirit objects such as images or PDF
template documents must, like the form definition, be passed to the Formcentric web
app in an encrypted format. You use the formcentric_encrypted_refs script to do this.
The script calls an executable that identifies the external URLs to the FirstSpirit objects
and encrypts these URLs. The encrypted URLs are saved in the fc_encryptedRefs
variable in the page context. When this script is called, all of the internal references
must be passed to the script in the ids parameter.

You can use the optional parameter resolutions to specify a comma-separated list of
resolutions: the image URLs will then be generated at these resolutions. If you do not
specify the resolutions parameter, the image URLs are generated for all resolutions.

$CMS_RENDER(script: "formcentric_encrypted_refs", ids: form.allReferences,
 resolutions: "47x47, 60x40")$

5.5. formcentric_login_ticket script

A FirstSpirit login ticket is required in order to access the Preview web app
content. This ticket is passed when the Formcentric web app is called, together
with the encrypted form definition and the encrypted internal references. The
formcentric_login_ticket script generates a login ticket and saves it in the
fc_loginTicket variable in the page context. If the context is not the Preview context,
the variable contains an empty string.

$CMS_RENDER(script:"formcentric_login_ticket")$

5.6. Page template

To display the forms correctly, additional JavaScripts and CSS styles are required.
These will have been imported during the installation of the Formcentric project
component.

When using the Spring MVC web application, extend the output of the HTML header in
your page templates to include the imported CSS (formcentric_css) and the imported
JavaScripts. Please take care to ensure that the JavaScripts are loaded in the order
as given, since some have dependencies on others.

Alternatively, you can also use the minified version of the scripts (*_min).

Formcentric for FirstSpirit | Developer Manual 53

...
<link rel="stylesheet" type="text/css"
 href="$CMS_REF(media:"formcentric_flex_css_min")$" />
...
$CMS_FOR(_script, [
 "json2_js_min",
 "jquery_3_6_0_js_min",
 "select2_4_0_13_js_min",
 "jquery_autocomplete_js_min",
 "jquery_format_1_3_js_min",
 "jquery_ui_widget_1_13_2_js_min",
 "load_image_all_js_min",
 "canvas_to_blob_js_min",
 "jquery_xdr_transport_js_min",
 "jquery_iframe_transport_js_min",
 "jquery_fileupload_10_31_0_js_min",
 "jquery_fileupload_process_10_31_0_js_min",
 "jquery_fileupload_image_10_31_0_js_min",
 "jquery_formcentric_1_9_js_min"
])$

<script type="text/javascript" src="$CMS_REF(media:_script)$"></script>
CMS_END_FOR
...

Please note that the actual reference names may differ from the names as
specified here. During content item import, FirstSpirit appends a sequential
number to the item's reference name if a content item with this name already
exists. In this case, ensure that you use the extended reference name.

For the headless web application, only one JavaScript needs to be loaded in the page
template. All other JavaScripts and CSS styles required are referenced in the corre-
sponding Headless Form paragraph style sheet and loaded when a form is accessed
by the Formcentric Client (see Section 5.1.3, “Internet (HTML) tab”).

...
<script type="text/javascript"
 src="$CMS_REF(media:"formcentric")$" defer></script>

$CMS_IF(isWebEdit)$
 <script defer>
 window.formcentric ??= {}
 window.formcentric.dynamicInit = true
 </script>
CMS_END_IF

etting the window.formcentric.dynamicInit attribute to true activates a MutationOb-
server. The Formcentric client then automatically reinitializes the form as soon as it is
modified. This is particularly necessary when editing the form in the ContentCreator.

Specifying the defer attribute ensures that the JavaScript is executed only after the
page has been fully parsed.

Formcentric for FirstSpirit | Developer Manual 54

5.7. Themes
For styling headless forms, Formcentric offers a selection of themes that can be modi-
fied individually to suit your requirements. Each theme consists of a template file, a
CSS file and a JSON file. The JSON file contains specific CSS parameters that you
can use to customise the visual style of the theme in accordance with your require-
ments. For more advanced modifications, you can download the source code from
the Formcentric npm repository, which is available at the following URL:

https://maven.monday-consulting.com:443/artifactory/formcentric-npm/
@formcentric/client/-/@formcentric/client-3.4.0.tgz

5.8. CSS
Formcentric already includes a simple CSS, which you can use as the basis for
designing your own forms. This CSS defines CSS classes that are used by the Spring
MVC application’s JSP templates. The example below shows you the generated
HTML presentation layer (extract) for a simple contact form.

<div id="ajaxreplaceDE2790">
 <form accept-charset="utf-8" class="mwf-form" data-mwf-id="DE187126"
 enctype="multipart/form-data" id="commandDE187126"
 method="post" onsubmit="return false;">

 <div class="mwf-layout mwf-layout--default">
 <div class="mwf-textinput" data-mwf-container="fccc48273e2eeb">
 <input id="fccc48273e2eeb" type="text" name="email"
 class="mwf-textinput__input" data-mwf-id="fccc48273e2eeb" />
 <label class="mwf-textinput__label" for="fccc48273e2eeb">Email</label>
 </div>

 <div class="mwf-textinput" data-mwf-container="fc313d3971298a">
 <input id="fc313d3971298a" name="message" type="text"
 class="mwf-textinput__input" data-mwf-id="fc313d3971298a" />
 <label class="mwf-textinput__label" for="fc313d3971298a">Message</label>
 </div>
 </div>
 </form>
</div>

The system outputs the form as series of div containers, with each form element
being embedded within a separate div element. The various HTML elements are
given specific CSS class syntax, so as to ensure that you can use CSS to style both
the entire form and its individual components – such as input fields, labels and error
messages. To avoid polluting other CSS classes in the project, all class names begin
with the mwf prefix.

Formcentric for FirstSpirit | Developer Manual 55

6. Programming and customisation
This section, written from a software developer’s point of view, shows you how you
can extend or modify Formcentric. Alongside general knowledge of Java and XML,
you will also need to know the fundamentals of the Spring framework and the Maven
build system.

6.1. Development workspace
To give you a head start when developing your extensions, Monday provides you
with a pre-configured development workspace. The workspace in question is a Maven
workspace that contains all of the examples described in this manual.

The workspace consists of nine Maven artefacts:

Artefact directory Description

/formcentric-admin-customizations Server and Project Configuration
extensions.

/formcentric-editor-customizations Extensions to input components

/formcentric-module-customiza-
tions

Module descriptor and FirstSpirit project
resources.

/formcentric-webapp-customiza-
tions

Extensions to the Spring MVC web application

/formcentric-webapp-lib-
customizations

Java classes for extensions to the Spring MVC
web application

/formcentric-headless-webapp-
customizations

Extensions for the headless server (WAR
deployment)

/formcentric-headless-server-
customizations

Extensions for the headless server (embedded
web server deployment)

/formcentric-headless-first-
spirit-customizations

Java classes for extensions to the headless
web application

/formcentric-webedit-customiza-
tions

Extensions to the web editor component.

/formcentric-webedit-lib-
customizations

Java classes for the extended web editor
component.

All required JAR archives (dependencies) are downloaded from the Monday Maven
server (http://maven.monday-consulting.com) when building the workspace. You will
need to enter the necessary login details beforehand in the Maven configuration file
settings.xml. The configuration file can be found in the root directory of the develop-
ment workspace.

To obtain your personal login details, please contact our Helpdesk
(support@formcentric.com).

Formcentric for FirstSpirit | Developer Manual 56

...
<servers>
 <server>
 <id>maven.monday-consulting.com</id>
 <username>my-username</username>
 <password>my-password</password>
 </server>
</servers>
...

As a final step, modify the FirstSpirit version specified in the root POM (pom.xml) to
match the version you have deployed.

<cms.version>5.2.190105</cms.version>

To build the workspace, switch to the directory <formcentric-firstspirit-workspace>
and execute the following from the command line:

mvn -s ./settings.xml clean install

To build the module without the Analytics extension, disable the Maven profile
analytics. In this case, the configuration files fsm.prototype.module.basic.xml
and fsm-assembly-basic.xml are used instead of the default configurations
fsm.prototype.module.xml and fsm-assembly.xml.

mvn -s ./settings.xml clean install -P'!analytics'

The FirstSpirit module archive created is stored in the directory <formcentric-first-
spirit-workspace>/formcentric-module-customizations/target.

6.2. Monday Maven plugin
Each FirstSpirit module contains a specialised module descriptor (module.xml), which
describes the components and files contained within the corresponding module. For
Formcentric, JAR archives are a key part of this, alongside configuration files and
output templates. To simplify the creation of the module descriptor, Formcentric has
a specialised Maven plugin that is used to generate the FirstSpirit module descriptor.
The plug-in parses the dependencies defined in the Maven configurations and uses
these to create the <resource> entries in the module descriptor.

The plugin is configured in the Maven configuration (pom.xml) of the formcen-
tric-module-customizations artefact.

You need to specify the following parameters in the plugin's <configuration> tag.

Parameter Description

configXml References the configuration file for the Maven plugin.

prototypeXml References the file that serves as the template for the module
descriptor to be created.

Formcentric for FirstSpirit | Developer Manual 57

<plugin>
 <groupId>com.monday-consulting.maven.plugins</groupId>
 <artifactId>fsm-maven-plugin</artifactId>
 <configuration>
 <configXml>${basedir}/target/extra-resources/fsm-plugin.xml</configXml>
 <prototypeXml>${basedir}/target/extra-resources/
 prototype.module.xml</prototypeXml>
 <targetXml>${basedir}/target/extra-resources/module.xml</targetXml>
 </configuration>
 <executions>
 <execution>
 <id>dependencyToXML</id>
 <phase>package</phase>
 <goals>
 <goal>dependencyToXML</goal>
 </goals>
 </execution>
 </executions>
</plugin>

To generate the FirstSpirit module descriptor, the templates prototype.module.xml or
prototype.module.basic.xml are used as a basis. These files are located in the /form-
centric-module-customizations/src/non-packaged-resources directory. They contain
various variables that are replaced when building the workspace. Any modified class
names, etc., must be configured there.

<module>
 <name>Formcentric</name>
 <version>${project.version}</version>
 <description>Formcentric Form Editor</description>
 <vendor>Formcentric GmbH</vendor>
 <components>
 <public>
 <name>FORMCENTRIC_FORMEDITOR</name>
 <description>Formcentric editor component</description>
 <class>de.espirit.firstspirit.module.GadgetSpecification</class>
 <configuration>
 <gom>com.formcentric.examples.gom.CustomGomFormEditor</gom>
 <factory>com.formcentric.editor.
 gadgets.FormEditorSwingGadgetFactory</factory>
 <value>com.formcentric.editor.
 gadgets.FormValueEngineerFactory</value>
 <scope data="yes" content="yes" link="yes"/>
 </configuration>
 <resources>
 <resource>files/</resource>
 <!-- Variable, die durch das Maven-Plugin ersetzt wird. -->
 <dependencies>formcentric-editor-resources</dependencies>
 </resources>
 </public>

 <web-app scopes="global">
 <name>Formcentric WebApp</name>
 <description>Formcentric FIRSTspirit integration.</description>

Formcentric for FirstSpirit | Developer Manual 58

 <configurable>com.formcentric.examples.
 admin.CustomWebAppConfiguration</configurable>
 <class>com.formcentric.admin.webapp.FormcentricWebApp</class>
 <web-xml>web.xml</web-xml>
 <resources>
 <!-- Variable, die durch das Maven-Plugin ersetzt wird. -->
 <dependencies>formcentric-admin-resources</dependencies>
 </resources>
 <web-resources>
 ..
 <!-- Variable, die durch das Maven-Plugin ersetzt wird. -->
 <dependencies>formcentric-webapp-resources</dependencies>
 </web-resources>
 </web-app>

 <project-app>
 <name>Formcentric Resources</name>
 <description>Formcentric project resources</description>
 <class>com.formcentric.admin.project.FormcentricProjectApp</class>
 <resources>
 <resource>files/</resource>
 <!-- Variable, die durch das Maven-Plugin ersetzt wird. -->
 <dependencies>formcentric-admin-resources</dependencies>
 </resources>
 </project-app>

 </components>
</module>

The configuration file fsm-plugin.xml is used to define the <dependencies> variable
with its corresponding dependencies.

<fsm-maven-plugin>
 <modules>
 <module>
 <id>change.this.now.fs5:formcentric-admin-customizations:jar</id>
 <dependencyTagValueInXml>formcentric-admin-resources
 </dependencyTagValueInXml>
 <firstSpiritScope>module</firstSpiritScope>
 <firstSpiritMode>isolated</firstSpiritMode>
 </module>
 <module>
 <id>change.this.now.fs5:formcentric-editor-customizations:jar</id>
 <dependencyTagValueInXml>formcentric-editor-resources
 </dependencyTagValueInXml>
 <firstSpiritScope>module</firstSpiritScope>
 <firstSpiritMode>isolated</firstSpiritMode>
 </module>
 <module>
 <id>change.this.now.fs5:formcentric-webapp-customizations:war</id>
 <dependencyTagValueInXml>formcentric-webapp-resources
 </dependencyTagValueInXml>
 <firstSpiritScope>module</firstSpiritScope>
 </module>
 </modules>

Formcentric for FirstSpirit | Developer Manual 59

</fsm-maven-plugin>

Element Description

<fsm-maven-plugin> Root element.

<scopes> Optional: specifies the Maven scopes that should be
considered when determining the dependent Maven
artefacts. Each scope must be specified separately. If
scopes are not specified here, then the default scopes
compile and runtime apply instead.

<scope> Designation of a maven scope to be considered.

<modules> Container element for the definition of artefact depen-
dencies.

<module> Specifies an artefact whose dependencies should be
written into the module descriptor.

<id> The artefact's Maven identifier.

Must be specified using the standard Maven notation
<groupId>:<artefactId>:<type>.

<dependencyTagVal-
ueInXml>

Name of the <dependencies> variable that is entered
into the module descriptor template.

<firstSpiritScope> Specifies the FirstSpirit scope (see also section
2.5.1.2, p. 13 in the Developer Manual
“MDEVDE_FirstSpirit_ModulDeveloperDoc.pdf”).

6.3. Extending the input component in Site Manager
The Monday Form Editor is based on a general framework with which Swing-based
XML editors can be developed as required. Within this framework, an XML document
is represented by a hierarchical structure of NodeModel objects. Each NodeModel
object corresponds to one or more elements in the XML structure. The framework
provides methods for the display, selection and editing of the individual NodeModel
objects.

Each NodeModel object is assigned a NodeType object. This contains information
about how the associated NodeModel is to be initialised, presented, processed and
validated. For each NodeType object, you can also specify which other XML elements
can be assigned beneath the model.

The NodeType objects required are generated by the EditorSetup class. You there-
fore use this as your starting point for extending the Form Editor.

Within the form framework, actions encapsulate the actual business logic for form data
processing. The following section gives you an example using an action to demon-
strate how you can extend the Form Editor to include additional elements.

Formcentric for FirstSpirit | Developer Manual 60

6.3.1. Developing a NodeEditorPane

For each element type, the system requires a modified editor, which must be derived
from the NodeEditorPane class. The node editor is used to process a NodeModel of
the corresponding type. The code snippet given below shows you the implementation
of a NodeEditorPane.

public class CustomActionEditorPane extends TabbedBaseActionEditorPane {

 public static final String PROP_CUSTOM = "customProperty";
 protected JPanel propertiesPanel;
 protected JTextField customPropertyField;
 protected ActionModel model; // extends NodeModel

 PropertiesBundle custombundle =
 PropertiesBundle.getInstance("com/custom/forms/formeditor",
 CustomActionEditorPane.class.getClassLoader());

 protected JTextField getCustomPropertyField() {
 if (customPropertyField == null) {
 customPropertyField = new JTextField();
 customPropertyField.addFocusListener(focusListener);
 customPropertyField.addKeyListener(new KeyAdapter() {
 public void keyReleased(final KeyEvent e) {
 model.setProperty(PROP_CUSTOM, customPropertyField.getText());
 });
 }
 return customPropertyField;
 }

 protected JPanel getPropertiesPanel() {
 if (propertiesPanel != null) {
 return propertiesPanel;
 }

 propertiesPanel = new JPanel();

 GridBagDesigner layout =
 new GridBagDesigner(custombundle, propertiesPanel);

 layout.row().labelTop("propLabel").expand()
 .add(getCustomPropertyField());

 layout.fill();

 return propertiesPanel;
 }

 public void setEditable(final boolean editable) {
 if (customPropertyField!= null) {
 customPropertyField.setEditable(editable);
 }
 }

 public void setModel(NodeModel model) {

Formcentric for FirstSpirit | Developer Manual 61

 this.model = (ActionModel) model;
 update();
 }

 public void update() {
 getCustomPropertyField().setText(
 (String) model.getProperty(PROP_CUSTOM));
 }
}

The example given above shows you a node editor containing a text field in which
the value of the property customProperty can be entered. The text field and the corre-
sponding label are arranged in a GridBagLayout on the underlying JPanel. For the
purpose of editor internationalisation, the text of the label is read from a language-
dependent resource bundle.

Text input is transferred to the NodeModel using an anonymous KeyListener.

6.3.2. Extending the EditorSetup class
Within the init method of the EditorSetupclass, the NodeType objects of the Form
Editor are generated. By overriding this method, you can generate and register an
additional NodeType object for the new CustomAction:

@Override
public void init() {

 super.init();

 PropertiesBundle custombundle =
 PropertiesBundle.getInstance("com/custom/forms/formeditor",
 this.getClass().getClassLoader());

 // neuen Typ erzeugen
 NodeType customActiontype = createCustomActionType(custombundle);

 // neuen Typ registrieren
 registerType(customActiontype);

 // als mögliches Unterelement des Form-Elements registrieren
 NodeType formNodeType = getNodeType(FORM.TYPE.FORM);
 formNodeType.addAllowedChildType(customActiontype);
}

The NodeType objects of the individual form elements are typically generated in sepa-
rate factory methods. The following example shows you how they are implemented:

protected NodeType createCustomActionType(final EditorBundle bundle) {

 final String CUSTOM_ACTION = "customAction";

 NodeType action = new NodeType(CUSTOM_ACTION, ActionModel.class,
 CustomActionEditorPane.class);

Formcentric for FirstSpirit | Developer Manual 62

 action.setTitle(bundle.getString(CUSTOM_ACTION + "Label"));

 action.setIcon(bundle.getImageIcon(CUSTOM_ACTION + "Icon"));

 action.setToolbarIcon(bundle.getImageIcon(CUSTOM_ACTION + "LargeIcon"));

 action.setValidator(new CustomActionValidator());

 action.setInitializer(new CustomActionInitializer());

 action.setButtonGroup(1);

 return action;
}

In the example given above, the first step is to create a new NodeType instance with
the name customAction. The name serves to identify this type uniquely in further
processing steps. As one example, the associated action implementation is identified
using this name in the web application. Accordingly, you can assign type names only
once. Following this, a specialised NodeValidator and a NodeInitializer are defined.

If you want to modify the initialisation or validation of an existing form
element, then it is generally sufficient for you to override the associated
factory method, so as to set a different validator or initialiser.

6.3.3. Extending the Form Editor GUI object model

The EditorSetup class is instantiated via the Form Editor's GUI object
model (GOM). By overriding the createEditorSetup method in the class
com.formcentric.editor.gadgets.FormEditorSwingGadgetFactory, you generate the
new EditorSetup class instead of the existing one.

public class CustomFormEditorSwingGadgetFactory extends
 FormEditorSwingGadgetFactory {
 @Override
 public FormEditorSetup createEditorSetup(GomFormEditor gomFormEditor,
 SpecialistsBroker broker, Language lang) {
 return new CustomFormEditorSetup(gomFormEditor, broker, lang));
 }
}

Configure the modified CustomGomFormEditor class in the prototype.module.xml
module descriptor in the input component's configuration element.

<name>FORMCENTRIC_FORMEDITOR</name>
<description>Monday Webforms editor component</description>
<class>de.espirit.firstspirit.module.GadgetSpecification</class>
<configuration>
 <factory>com.custom.webforms.CustomFormEditorSwingGadgetFactory</factory>
 ...
<configuration>

Formcentric for FirstSpirit | Developer Manual 63

6.4. Extending the ContentCreator web application
The Formcentric ContentCreator integration is a single-page application that is based
on the JavaScript React framework. The Form Editor's user interface is generated
client-side on the browser using the JSON data sent by the server. The interface
layout is specified declaratively using a number of JavaScript configuration files. This
approach makes it easy for you to make changes and create extensions to the form
editing interface.

The JavaScript configuration files that are stored in the development workspace in the
formcentric-webedit-customizations module in the directory /src/main/webapp/WEB-
INF/formcentric_editor/gadget/formeditor/config/editor constitute the main starting-
point for making changes to the form editing interface. All of the changes described
below are made to the files in this directory.

The available form elements and their properties are described as JSON objects. The
React application uses these to generate the form editing interface. The following
example shows a configuration snippet for the textArea form element.

{
 icon: 'textarea',
 type: 'textArea',
 properties: {
 general: [
 {
 title: 'name',
 type: 'text',
 properties: {
 required: true
 }
 },
 {
 title: 'label',
 type: 'text'
 },
 {
 title: 'hint',
 type: 'text'
 },
 {
 title: 'value',
 type: 'wysiwyg'
 },

 ...
]
 }
}

6.4.1. Adding a new form element
Extend the Form Editor to include a new form element by extending the configura-
tion fields_custom.js. If you want to extend the Editor to include the form element

Formcentric for FirstSpirit | Developer Manual 64

termsCheckbox with the properties name, text and link, for example, then add the
following object definition to the JavaScript array in the configuration fields_custom.js.

[
 {
 icon: 'termscheckbox',
 type: 'termsCheckbox',
 properties: {
 general: [
 {
 title: 'name',
 type: 'text',
 properties: {
 required: true
 }
 },
 {
 title: 'text',
 type: 'wysiwyg',
 properties: {
 required: true
 }
 },
 {
 title: 'link',
 type: 'reference',
 properties: {
 refType: 'pageref',
 FS_refType: 'pageref'
 }
 },
]
 },
 specialProperties: {
 condition: {
 conditionable: false,
 operators: {}
 }
 }
 }
]

Please note: The external JavaScript array already exists and simply needs to be
extended by the configuration object.

The table below describes the possible attributes that a field definition can have at
the first level.

Attribute Description

icon Type: String

Name of the icon to load. The name specified must match the
filename of the icon without the file extension.

type Type: String

Formcentric for FirstSpirit | Developer Manual 65

Attribute Description
Form element name

properties Type: Object

Defines the properties of a field that can be edited in Content-
Creator on the right-hand side, under Field properties. The
object properties of properties each correspond to individual
Editor tabs. The following JSON snippet configures two tabs
with the name general and special, with a total of three proper-
ties: name, label, hint.

properties: {
 general: [
 {
 title: 'name',
 type: 'text'
 },
 {
 title: 'label',
 type: 'text'
 }
],
 special: [
 {
 title: 'hint',
 type: 'text'
 }
]
}

To ensure that the field can be uniquely identified during later
processing, the property titel is required with the value name in
the general array.

For a list of all available property types, please see
Section 6.4.5, “Input elements for element properties”.

specialProperties Type: Object

You use the specialProperties attribute to configure proper-
ties that are evaluated by the Editor for internal functions. The
following JSON snippet defines the usage of the field within a
condition.

specialProperties: {
 condition: {
 conditionable: true,
 operators: {
 startswith: {
 values: [],
 freeField: true,
 useChildren: false

Formcentric for FirstSpirit | Developer Manual 66

Attribute Description
 },
 endswith: {
 values: [],
 freeField: true,
 useChildren: false
 },
 contains: {
 values: [],
 freeField: true,
 useChildren: false
 }
 }
 }
}

You set conditionable: true to specify that the field can be
selected in a condition.

You specify the operators that are selectable in the condition for
this form element type in the operators object. An operator defi-
nition always utilises the schema

<operator-name>: {values: [], freeField: true, useChildren: false}.

The name of the operator is also used as the translation ID for
user interface internationalisation (see Section 6.4.7, “User inter-
face internationalisation”).

In the values attribute, you can specify a string array containing
values that can be selected by the form author when defining a
condition.

If you specify the attribute freeField: true, this lets form authors
enter user-defined values. This option is required for comparison
operators, for example, where form authors need to enter their
own comparison values.

If the new field type is a list type with predefined options, you
can specify the attribute useChildren if you want to make the list
options selectable as a value for the condition.

6.4.2. Adding a new validator
To add a new validator to an input field, extend the format property of the corre-
sponding input element.

The example below shows the configuration of the email validator for the single-line
text field (inputField).

{
 title: 'format',
 type: 'dropdown_format',

Formcentric for FirstSpirit | Developer Manual 67

 properties: {
 options: {
 email: {
 enabled: true,
 fields: {
 errormessage: {
 title: 'errormessage',
 type: 'text'
 }
 }
 }
 }
 }
}

The specified attribute name (email in the example) must match the external name
of the validator. The name is also used for user interface internationalisation. In the
translation file, the translation ID <validator-name>Validator is used to search for a
label for the validator.

You can use fields to define the required fields for the validator. The available field
types are listed in the table under Section 6.4.5, “Input elements for element proper-
ties”.

6.4.3. Adding a new action

Extend the Form Editor to include a new action by extending the configuration
actions_custom.js.

If you want to extend the Editor to include the action simpleMailAction with the prop-
erties to, subject, body and note, for example, then add the following object definition
to the JSON array in the configuration actions_custom.js.

[
 {
 icon: 'simplemailaction',
 type: 'simpleMailAction',
 properties: {
 general: [
 {
 title: 'to',
 type: 'text',
 properties: {
 required: true
 }
 },

 {
 title: 'subject',
 type: 'text',
 properties: {
 required: true
 }
 },

Formcentric for FirstSpirit | Developer Manual 68

 {
 title: 'body',
 type: 'wysiwyg'
 },
 {
 title: 'note',
 type: 'wysiwyg'
 },
]
 },
 specialProperties: {
 condition: {
 conditionable: false,
 operators: {}
 }
 }
 }
]

The table below describes the possible attributes that an action definition can have
at the first level.

Attribute Description

icon Type: String

Name of the icon to load. The name specified must match the
filename of the icon without the file extension.

type Type: String

Name of the field type.

properties Type: Object

Describes the properties of an action that can be edited in
ContentCreator on the right-hand side, under Properties. The
object properties of properties each correspond to individual
tabs. The following JSON snippet creates two tabs with the
name general and special, with a total of three properties: to,
subject and hint.

properties: {
 general: [
 {
 title: 'to',
 type: 'text',
 properties: {
 required: true
 }
 },

 {
 title: 'subject',
 type: 'text',
 properties: {

Formcentric for FirstSpirit | Developer Manual 69

Attribute Description
 required: true
 }
 }
],
 special: [
 {
 title: 'hint',
 type: 'text'
 }
]
}

For a list of all available property types, please see
Section 6.4.5, “Input elements for element properties”.

specialProperties Type: Object

You use the specialProperties attribute to configure properties
that are evaluated by the Editor for internal functions.

specialProperties: { maxCount: 1 }

You use maxCount: <count> to specify how many times the
action can be used within a form.

6.4.4. Adding new element properties

Element properties are defined under the properties attribute of the parent form
element definition (see Section 6.4.1, “Adding a new form element”). You add a new
property to the form element (form field, action or validator) by specifying a JSON
object with the following structure.

{
 title: '<attribute-name>',
 type: '<field-type>',
 value: 'DefaultValue',
 properties: {
 required: true
 }
}

The following table describes the attributes of the configuration object.

Attribute Description

title Name used to store the field property in the form definition.

type Property type. The available types are explained in the
following list.

value Optional specification of a default value.

properties Other type-specific configuration options

Formcentric for FirstSpirit | Developer Manual 70

Attribute Description

properties.required Specifies whether the property is a required field.

6.4.5. Input elements for element properties

The following table describes the configuration objects for the input elements of
the available element properties. You can use these when defining the various
form element properties. Please note that some types cannot be used with all form
elements.

Type Description

text Text field

Usage: all form elements

{
 title: 'label',
 type: 'text'
}

number Number field that only allows numeric input.

Usage: all form elements

{
 title: 'maxlength',
 type: 'number',
 properties: {
 min: 0,
 max: null
 }
}

Also supports scientific number notation (e.g. 10e6).

You can set upper/lower limits by specifying properties.min
and properties.max. You can reset an existing limit by using
properties.min: null, for example.

date Data selection element.

Usage: all form elements

{
 title: 'from',
 type: 'date'
}

You can define a default value with value. Uses the standard
JavaScript date format.

checkbox Checkbox

Formcentric for FirstSpirit | Developer Manual 71

Type Description
Usage: all form elements

{
 title: 'requiredField',
 type: 'checkbox'
}

dropdown List with fixed options from which the form author can select a
single entry.

Usage: all form elements

{
 title: 'pattern',
 type: 'dropdown',
 properties: {
 options: ['dd.MM.yyyy', 'yyyy-MM-dd']
 }
}

You can specify the selection options as a string array with
properties.options .

properties: {
 options: [
 {text: 'Value 1', value: 'one'},
 {text: 'Example Two', value: two}
]
}

Options can also be defined as objects with value (option
value) and text (display name).

dropdown_format Drop-down list for field validators

Usage: Input element (inputField, passwordField, etc.)

During selection, the properties of the selected validator are
shown underneath the drop-down list.

The following example shows how to define the email
validator.

{
 title: 'format',
 type: 'dropdown_format',
 properties: {
 options: {
 email: {
 enabled: true,
 fields: {
 errormessage: {
 title: 'errormessage',

Formcentric for FirstSpirit | Developer Manual 72

Type Description
 type: 'text'
 }
 }
 }
 }
 }
}

You can specify the selectable validators with
properties.options .

You can manage the validator properties with
properties.options["<validator-name>"].fields .

You use properties.options["<validator-
name>"].enabled=true or properties.options["<validator-
name>"].enabled=false to activate the validator or to deacti-
vate it so that it is no longer selectable.

syntax Multi-line JavaScript input field with syntax highlighting.

Usage: all form elements

{
 title: 'script',
 type: 'syntax',
 value: 'function calculate() {};'
}

condition Input element for processing conditions.

Usage: condition

{
 title: 'conditionContent',
 type: 'condition',
 properties: {
 conditional_fields: [],
 condition_conjunction: 'true',
 condition: []
 }
}

wysiwyg Multi-line text input field that allows formatting syntax to be
used.

Usage: all form elements

{
 title: 'value',
 type: 'wysiwyg'
}

element Allows the selection of other elements in the same form.

Formcentric for FirstSpirit | Developer Manual 73

Type Description
Usage: all form elements

{
 title: 'elements',
 type: 'element'
}

dataSource Input element for a data source's variable parameter list.

Usage: inputField, comboBox, radioGroup, checkboxGroup,
hiddenField

{
 title: 'datasource',
 type: 'dataSource',
 properties: {
 datasource_params: []
 }
}

reference Element for selecting a FirstSpirit reference (opens the
FirstSpirit selection screen).

Usage: all form elements

{
 title: 'pictureUrl',
 type: 'reference',
 properties: {
 FS_refType: 'picture'
 }
}

The property properties.FS_refType gives you the option of
restricting the selection to a certain type of content (Page,
Picture, Folder, etc.). The following items can be specified
here: pageref, picture, file.

multi_dropdown List with fixed options from which the form author can select
multiple entries.

Usage: all form elements

{
 title: 'numberType',
 type: 'multi_dropdown',
 properties: {
 configuration_name: 'phoneNumberTypes'
 }
}

Formcentric for FirstSpirit | Developer Manual 74

Type Description
You can define the selection options (as strings) with the
properties.options attribute.

Alternatively, the values can also be taken from the paragraph
style sheet. In this case, specify the name of the corre-
sponding GOM element in the configuration_name attribute.

The configuration_name parameter specifies the name that is
used to store the value in the form definition.

regEx_dropdown Drop-down list for regular expressions.

Usage: regex

{
 title: 'mailPattern',
 type: 'regEx_dropdown',
 properties: {
 options: [
 {
 text: '^[+]{0,1}[0-9\\s-/]*$',
 label: 'phone'
 },
 {
 text: '^[a-zA-ZÁ-ÿöäüÖÄÜß\\s-]*$',
 label: 'characters'
 }
]
 }
}

mediastore_mappingElement for the assignment of data upload fields to directories
in the FirstSpirit media store.

Usage: mediaStoreAction

{
 title: 'mediastore_mapping',
 type: 'mediastore_mapping',
 value: '[]'
}

field_mapping Element for selecting a PDF template (opens a FirstSpirit
selection screen).

Usage: pdfAction

A PDF field from the template can then be assigned to the
form fields. If the fields are drop-down lists, their options can
be selected and assigned to one another.

Usage: pdfAction

{

Formcentric for FirstSpirit | Developer Manual 75

Type Description
 title: 'field_mapping',
 type: 'field_mapping',
 value: '[]'
}

datasource_mappingYou can use this input element to assign form fields to the
columns of a FirstSpirit data source.

Usage: dataSourceAction

{
 title: 'datasource_mapping',
 type: 'datasource_mapping',
 value: '[]'
}

custom_mapping You can use this input element to design your own mapping
tables.

{
 title: 'custom_table',
 type: 'custom_mapping',
 properties: {
 mapping: [
 {
 type: 'dropdown',
 name: 'field',
 placeholder: 'custom_table.field',
 selectableFieldTypes: [
 'inputField', 'radioGroup'
]
 },
 {
 type: 'dropdown',
 name: 'option',
 placeholder: 'custom_table.option',
 connectedField: 'field'
 },
 {
 type: 'text',
 name: 'otherValue',
 placeholder: 'custom_table.otherValue'
 },
 {
 type: 'dropdown',
 name: 'attribut',
 loadRemoteData: 'FS_ServiceField',
 loadRemoteDataOptions: [
 {
 name: 'connectedField',
 key: 'task',
 value: 'someDropdown'
 },
 {

Formcentric for FirstSpirit | Developer Manual 76

Type Description
 name: 'connectedMapField_type',
 key: 'type',
 value: 'field'
 },
 {
 name: 'connectedMapField',
 key: 'value',
 value: 'field'
 },
],
 placeholder: 'custom_table.attribut',
 },
 {
 type: 'dropdown',
 name: 'attributoption',
 placeholder: 'custom_table.attributoption',
 loadRemoteData: 'FS_ServiceField',
 connectedField: 'attribut',
 },
],
 },
},

You define the columns in the properties.mapping attribute.
You use the type key to decide whether this is a selection field
(drop-down list) or an input field (text).

The name key sets the key for the export of the respective
fields in a row.

You use the placeholder key to define the placeholder for the
field.

You use the loadRemoteData key to decide, as you can with
a drop-down field, if the options should be provided by a
FirstSpirit service.

If the options are provided by a FirstSpirit service, you can use
the loadRemoteDataOptions key to pass additional attributes,
such as values of other fields on the element, for example, or
from the mapping itself. The following example creates this
object, so as to pass it with the loadRemoteData call. {task:
<ValueOfFieldsomeDropdown>, type: <Typeof FormElementS-

electedinField>, value: '<ValueofMappingDropdownField>'}

If you want to select existing form fields in a drop-down, you
can pass these by using the selectableFieldTypes key.

If you want to access nested options from a form field or
access loadRemoteData from the options themselves, then
you can use connectedField and specify the name of a

Formcentric for FirstSpirit | Developer Manual 77

Type Description
mapping field to access these and make them available for
selection.

6.4.6. Editing existing form elements

To modify an existing form element, you copy its full element definition from the
corresponding default configuration (fields_default.js or actions_default.js) into the
corresponding configuration file (fields_custom.js or actions_custom.js).

You can then change or add to the element properties according to your requirements
as has been described above.

Please note: Changes made to the default configurations in the development work-
space have no effect on the Form Editor.

6.4.7. User interface internationalisation

For the internationalisation of the user interface, the language-dependent labels are
read from master language files. Out of the box, Formcentric supports the languages
English and German.

To modify or add labels for existing or new form elements, you need to extend or
modify the formeditor_de.json and formeditor_en.json language files, which you will
find in the development workspace.

Each label is stored in the language files with a unique translation ID. Typically, the
translation IDs of the element properties are each made up of the internal element
name and the name of the respective property. For the placeholder property of the
password field, the entry is as follows:

"passwordField.placeholder": "Placeholder"

You can add a label for a new element property by adding the corresponding entry
to each language file.

6.5. Extending the Spring MVC web application

6.5.1. Spring configuration files

The web app module itself is a Spring-based web application. Most of the functionality
is encapsulated in specialised beans, which are instantiated and initialised by using
Spring’s dependency injection mechanism. By swapping out individual beans, you
can augment the application with new or modified functionality. In general, however,
you will merely need to override individual methods of existing beans.

Out of the box, the Spring MVC web application includes the configuration files as
described below, which are stored in the web application’s /WEB-INF/spring directory.

Formcentric for FirstSpirit | Developer Manual 78

formcentric-application.xml

This is used to aggregate the various Spring XML files and also for configuration of
the PropertySourcesPlaceholderConfigurer. This offers a quick overview of all of the
relevant Spring files that are required for the web application.

formcentric-actions.xml

Configures the required actions. Ensure that the action beans listed here are also
entered into the action mapping (see below). The required properties are read from
several property files and configured appropriately. If you would like to change values,
you will need to modify these files accordingly.

<bean name="mailAction" class="com.formcentric.actions.mail.MailAction">
 <property name="mailer" ref="mailer" />
 <property name="successView" value="success" />

 <!-- Mapping von Formatbezeichnern auf MailBodyRenderer. -->
 <property name="bodyRendererMapping">
 <map>
 <entry key="html" value-ref="htmlBodyRenderer"/>
 <entry key="text" value-ref="textBodyRenderer"/>
 <entry key="freetext" value-ref="freeTextBodyRenderer"/>
 <entry key="freehtml" value-ref="freeHtmlBodyRenderer"/>/>
 </map>
 </property>
</bean>
...

formcentric-captcha.xml

The open source JCaptcha framework is used to generate captchas. The configura-
tion here is a standard JCaptcha configuration, which can be used to influence the
appearance and behaviour of individual captchas. For a detailed description of config-
uration options, please visit the project website at https://jcaptcha.atlassian.net/wiki/
display/general/Home.

formcentric-services.xml

Configures the REST services. Enter the RestService beans listed here into the REST
controller's service mapping as additional entries (see the section called “formcen-
tric-controllers.xml”).

<bean id="deCountriesRestService"
 class="com.formcentric.rest.CountriesRestService">
 <property name="lang" value="de"/>
</bean>

<bean id="enCountriesRestService"
 class="com.formcentric.rest.CountriesRestService">
 <property name="lang" value="en"/>
</bean>

https://jcaptcha.atlassian.net/wiki/display/general/Home
https://jcaptcha.atlassian.net/wiki/display/general/Home

Formcentric for FirstSpirit | Developer Manual 79

formcentric-controllers.xml

Configures the form controller, the REST controller and the FormCommandBeanFac-
tory that is used to create the FormCommandBean. The FormCommandBean calls
the configured initialiser, validators and actions, and generates the form model.

You configure new actions, validators and form elements using the CommandBean
factory:

<bean id="defaultFormCommandBeanFactory"
 class="com.formcentric.logicbeans.DefaultFormCommandBeanFactory">

 <property name="formElementClassMapping">
 <map>
 <entry key="inputField" value="java.lang.String"/>
 <entry key="passwordField" value="java.lang.String"/>
 <entry key="hiddenField" value="java.lang.String"/>
 <entry key="textArea" value="java.lang.String"/>
 <entry key="radioGroup" value="java.lang.String[]"/>
 <entry key="comboBox" value="java.lang.String[]"/>
 <entry key="checkBoxGroup" value="java.lang.String[]"/>
 <entry key="fileUpload" value="com.formcentric.model.FileHolder"/>
 <entry key="captcha" value="java.lang.String"/>
 </map>
 </property>

 <property name="validatorMapping">
 <map>
 <entry key="notempty" value-ref="notemptyValidator"/>
 <entry key="jcaptcha" value-ref="captchaValidator"/>
 <entry key="email" value-ref="emailValidator"/>
 <entry key="date" value-ref="dateValidator"/>
 <entry key="number" value-ref="numberValidator"/>
 <entry key="javascript" value-ref="javascriptValidator"/>
 <entry key="regex" value-ref="regexValidator"/>
 <entry key="length" value-ref="lengthValidator"/>
 <entry key="zipcode" value-ref="zipCodeValidator"/>
 <entry key="phone" value-ref="phoneValidator"/>
 <entry key="password" value-ref="passwordValidator"/>
 <entry key="bic" value-ref="bicValidator"/>
 <entry key="iban" value-ref="ibanValidator"/>
 <entry key="file" value-ref="fileValidator"/>
 <entry key="equal" value-ref="equalValidator"/>
 </map>
 </property>

 <property name="actionMapping">
 <map>
 <entry key="mailAction" value-ref="mailAction"/>
 <entry key="compositeAction" value-ref="compositeAction"/>
 <entry key="dataSourceAction" value-ref="dataSourceAction"/>
 <entry key="mediaStoreAction" value-ref="mediaStoreAction"/>
 <entry key="pdfAction" value-ref="pdfAction"/>
 <entry key="datastoreAction" value-ref="datastoreAction"/>
 <entry key="redirectAction" value-ref="redirectAction"/>

Formcentric for FirstSpirit | Developer Manual 80

 </map>
 </property>
</bean>

<bean id="formController"
 class="com.formcentric.controllers.FormController">

 <property name="prefix" value="/form" />
 <!-- form controller specific part -->
 <property name="formCommandBeanFactory"
 ref="defaultFormCommandBeanFactory" />
 <property name="bindOnNewForm" value="true" />
 <property name="commandNamePrefix" value="command" />
 <property name="restoreInitialPage" value="true" />
 <property name="trimSpaces" value="false" />
 <property name="supportedMethods" value="POST" />
</bean>

<bean id="restController"
 class="com.formcentric.controllers.RestController">

 <property name="prefix" value="/rest" />
 <property name="commandNamePrefix" value="command" />

 <!-- Service-Mapping -->
 <property name="restServiceMapping">
 <map>
 <entry key="Länder" value-ref="deCountriesRestService"/>
 <entry key="Countries" value-ref="enCountriesRestService"/>
 </map>
 </property>
</bean>

formcentric-resourcebundle.xml

Adds the Formcentric resource bundle to the existing messageSource bean.

<bean id="messageSource"
 class="org.springframework.context.support.ResourceBundleMessageSource">
 <property name="basenames">
 <list>
 <value>com.formcentric.resourcebundle.messages</value>
 </list>
 </property>
</bean>

Individual Formcentric messages can be overwritten by using a project-
specific resource bundle. We recommend including this bundle in the list of
basenames at a position before the Formcentric resource bundle. For further
information, please see the Spring configuration Javadoc.

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/support/AbstractResourceBasedMessageSource.html#setBasenames-java.lang.String...-

Formcentric for FirstSpirit | Developer Manual 81

formcentric-views.xml

formcentric-views.xml serves as the central configuration file. Here you specify
whether JSP or FreeMarker is used by including either formcentric-views-jsp.xml or
formcentric-views-freemarker.xml. In addition, the view beans for JSON, file down-
load, image processing (Captcha, Thumbnail) and metrics are defined here.

<!-- use one of these for either JSP or FreeMarker templates -->
<import resource="formcentric-views-jsp.xml"/>
<!-- <import resource="formcentric-views-freemarker.xml"/> -->

<bean id="beanViewResolver"
 class="com.formcentric.view.BeanViewResolver">
 <property name="order" value="1"/>
 <property name="views">
 <map>
 <entry key="json" value-ref="jsonView"/>
 <entry key="file" value-ref="fileDownloadView"/>
 <entry key="fileInfo" value-ref="fileInfoView"/>
 <entry key="thumbnail" value-ref="thumbnailView"/>
 <entry key="captcha" value-ref="captchaView"/>
 <entry key="metrics" value-ref="metricsView"/>
 </map>
 </property>
</bean>
...

formcentric-views-jsp.xml

In this configuration, the JspViewResolver is defined. Furthermore, you determine
under which path (e.g., /WEB-INF/templates/jsp/ or /WEB-INF/templates_legacy/jsp/)
the JSP templates are located.

formcentric-views-freemarker.xml

In formcentric-views-freemarker.xml, the FreeMarkerViewResolver is created and
configured for accessing FreeMarker templates (e.g., in /WEB-INF/templates/ftl/ or /
WEB-INF/templates_legacy/ftl/).

formcentric-mail.xml

You use this configuration to specify the mail server connection settings. The config-
ured mailer bean is used by the Mail action. If you want to change the underlying
properties of the mailer bean, you will find all of the values you require in the form-
centric-mail.properties file.

<bean id="mailer" class="com.formcentric.mail.SpringMailer">
 <constructor-arg ref="mailProperties"/>
</bean>

Formcentric for FirstSpirit | Developer Manual 82

The configuration settings for the mailer bean are read with the help of a
PropertiesFactoryBean from a separate property file, generated by Server
and Project Configuration (see Section 4.4.2, “Configuration”).

formcentric-network.xml

Configures the HttpClient, which is used to download required web resources such
as the PDF template documents. Environment-neutral configuration parameters can
be found in the formcentric-network.properties file.

<!-- Proxy configuration -->
<bean id="proxy" class="com.formcentric.http.ProxyConfig">
 <property name="host" value="${proxy.host}"/>
 <property name="port" value="${proxy.port}"/>
 ...
</bean>

<!-- HttpClient configuration -->
<bean id="httpClient" class="com.formcentric.http.HttpClientFacade">
 <!-- Browser identification string -->
 <property name="userAgent" value="Mozilla/5.0 Firefox/26.0"/>

 <!-- Proxy configuration -->
 <property name="proxyConfig" ref="proxy" />
 ...
</bean>

formcentric-connection.xml

You use this configuration to specify the FirstSpirit server connection settings. The
configured ConnectionFactory bean is used by the FirstSpirit action. The factory can
be modified by setting properties in the associated formcentric-connection.properties
file.

<bean id="firstSpiritConnection"
 class="com.formcentric.firstspirit.DisposableConnection" >
 <property name="protocol" value="${connection.transport.protocol}" />
 <property name="host" value="${connection.host}" />
 <property name="port" value="${connection.port}" />
 <property name="user" value="${connection.user}" />
 <property name="password" value="${connection.password}" />
 <property name="useHttps" value="${connection.https:false}"/>
</bean>

The configuration settings for the ConnectionFactory bean are read with
the help of a PropertyPlaceholderConfigurer from a separate property file,
generated by Server and Project Configuration (see Section 4.4.2, “Config-
uration”).

Formcentric for FirstSpirit | Developer Manual 83

formcentric-analytics.xml

You use this configuration to specify the connection settings to the Formcentric
Backend. The configured BackendApiClient bean is used by the Analytics action, the
BackendFormStateStore and the TrackingCommandBean.

For authentication against the Formcentric Backend, an access token is required. If
this token should be generated automatically at runtime, the ClientSecretCredential-
sAuthProvider can be used. This requires the client secret that was issued during
Backend configuration. Alternatively, you can generate the token manually and use
the ApplicationAuthProvider. For more information about generating an access token,
please see the Installation Manual for the Formcentric Backend.

You can configure the associated properties individually in the formcen-
tric-analytics.properties file.

<!--
 METHOD 1: Use a pre-generated token.
-->
<bean id="analyticsAuthenticator"
 class="com.formcentric.backend.api.auth.ApplicationAuthProvider">
 <constructor-arg index="0" value="${analytics.apiAuthentication}" />
</bean>

<!--
 METHOD 2: Pass the full client credentials and request a token at runtime.
-->
<bean id="analyticsAuthenticator" class="com.formcentric.backend
 .api.auth.ClientSecretCredentialsAuthProvider">
 <constructor-arg index="0" value="${analytics.backendUrl}" />
 <constructor-arg index="1" value="${analytics.apiAuthentication}" />
</bean>

<bean id="analyticsApiBuilder"
 class="com.formcentric.backend.api.ApiClientBuilder">
 <constructor-arg index="0" value="${analytics.backendUrl}" />
 <constructor-arg index="1" ref="analyticsAuthenticator" />
</bean>

<bean id="fcBackendApiClient"
 factory-bean="analyticsApiBuilder" factory-method="backendApiClient" />

formcentric-security.xml

formcentric-security.xml contains the basic configuration for Spring Security and
controls access to protected endpoints. In this example, access to the paths /secure/
** and /servlet/secure/** is secured by simple HTTP Basic authentication. Users who
access these paths require the ROLE_METRICS role.

formcentric-metrics.xml

In formcentric-metrics.xml, the components for measuring and exporting application
metrics using Micrometer are configured.

Formcentric for FirstSpirit | Developer Manual 84

6.5.2. Property Files

The environment-specific configuration of the Spring MVC web application is handled
through several property files. These contain key settings for features such as
analytics, CAPTCHA, email delivery, licensing, and monitoring.

When you perform the configuration using the ServerManager, the configuration
dialog automatically generates the listed property files (see Section 4.4.1, “Installa-
tion”).

The following section lists all relevant configuration files along with their parameters
and a brief description.

formcentric-analytics.properties

Configuration for connecting to the Formcentric Analytics backend.

Parameter Description

analytics.backendUrl URL of the analytics backend

analytics.apiAuthentication API secret for authentication

analytics.collectMetadata Store browser metadata (true/false)

formcentric-captcha.properties

Selection and configuration of the CAPTCHA provider.

Parameter Description

captcha.provider CAPTCHA provider: jCaptcha, friendlyCaptcha, re-
Captcha.

captcha.secret API secret (provider-dependent, optional)

captcha.siteKey Key for embedding CAPTCHA

captcha.endpoint Endpoint for Friendly Captcha (e.g., global, eu)

formcentric-connection.properties

Connection configuration to the FirstSpirit server.

Parameter Description

connection.transport.protocol Protocol (1=HTTP, 2=Socket)

connection.host Hostname/IP of the FirstSpirit server

connection.port Port number

connection.user Username for FS login

connection.password Password for FS login

connection.maxsessions Maximum number of parallel sessions

Formcentric for FirstSpirit | Developer Manual 85

Parameter Description

connection.https Use HTTPS (true/false)

formcentric-cors.properties

Configuration for Cross-Origin Resource Sharing (CORS).

Parameter Description

cors.allowedOriginPatterns Allowed origin domains or wildcards

cors.allowedHeaders Permitted headers

cors.exposedHeaders Additional response headers

cors.maxAge Validity of preflight requests in seconds

formcentric-license.properties

Path to the license file used to unlock Formcentric features.

Parameter Description

license Path to the license file, e.g., /WEB-INF/formcen-
tric-license.txt

formcentric-mail.properties

Mail server settings for email-based form actions.

Parameter Description

mail.smtp.host SMTP hostname

mail.smtp.port SMTP port

mail.user SMTP username

mail.password SMTP password

mail.smtp.auth Enable SMTP authentication (true/false)

mail.smtp.starttls.enable Enable StartTLS (true/false)

mail.charset Character set, e.g., utf-8

mail.mime.encodefilename Encode filenames in emails

mail.debug Log full mail content (true/false)

formcentric-metrics.properties

Configuration for metrics collection and protection.

Parameter Description

metrics.usage.activated Enable usage metrics

Formcentric for FirstSpirit | Developer Manual 86

Parameter Description

metrics.health.activated Enable system health metrics

metrics.user Username for accessing metrics

metrics.password Bcrypt-encrypted password for metrics access

formcentric-network.properties

Configuration for optional proxy access.

Parameter Description

proxy.type Proxy type (NONE, MANUAL, AUTO)

proxy.host Proxy hostname

proxy.port Proxy port

proxy.user Proxy username

proxy.password Proxy password

proxy.configUrl URL to the PAC file

proxy.exclusions Exceptions (hosts/domains)

formcentric-optin.properties

Whitelist of target URLs for the double opt-in process.

Parameter Description

optin.urlPatterns List of allowed URL patterns (empty = no restric-
tion)

formcentric-pdf.properties

Configuration of PDF generation for form actions.

Parameter Description

pdfAction.baseUrl External base URL at runtime. Used to reference
published PDF templates in the website.

pdfAction.templateDir Directory from which PDF templates are loaded. If
empty, published templates are used.

6.5.3. Usage without Formcentric Analytics

The Spring configuration files formcentric-actions.xml, formcentric-controllers.xml
and formcentric-analytics.xml contain components that can only be used when Form-
centric Analytics is deployed. If you want to use Formcentric without Analytics, then

Formcentric for FirstSpirit | Developer Manual 87

the following beans and bean references must be removed from the Spring configu-
ration files listed:

formcentric-actions.xml: datastoreAction

formcentric-controllers.xml: formStateStore (BackendFormStateStore), default-
TrackingCommandBean, trackingController

formcentric-analytics.xml: None of the beans in this file are required.

6.5.4. Formcentric licence file

The formcentric-license.xml file configures the LicenseLoader from Formcentric. You
use the corresponding formcentric-license.properties to specify the path to the licence
file.

Example (Linux/Unix): /path/to/formcentric-license

Example (Windows): C:/path/to/formcentric-license

Paths that do not start with a / are resolved relative to the web app.

6.5.5. Web security

Formcentric contains a security servlet filter as a safeguard against cross-site
scripting (XSS) attacks and cross-site request forgery (XSRF) attacks. This filter
removes illegal HTML tags, CSS and scripts from the form data submitted. The filter
also checks to confirm that the form data contains a valid XSRF token.

As a safeguard against XSRF attacks, each form can be given an additional XSRF
token as a hidden parameter: this is then submitted to the web application along with
the normal form data. The security filter verifies that the token submitted matches the
token stored in the user’s session. If this is the case, the request is forwarded to the
web application. If not, a 401 error message is returned to the calling client and the
failed access is logged in the web application log using the warn log level with the
following information:

• URL accessed

• Form data submitted (POST parameter)

• IP address of the accessing client

• Fully qualified name of the accessing client or the last proxy used

The following example shows you how to insert the XSRF token into the form
document's output template:

<%@ taglib prefix="form"

Formcentric for FirstSpirit | Developer Manual 88

 uri="http://www.springframework.org/tags/form"%>
<%@ taglib prefix="fcs"
 uri="http://www.formcentric.com/web-security-1.0" %>
<%@ taglib prefix="c"
 uri="http://java.sun.com/jsp/jstl/core" %>

<c:url value="/servlet/form/${self.uid}?view=ajax" var="ajaxUrl"/>
<form:errors path="command${self.uid}" cssClass="error" />

<div id="ajaxreplace${self.uid}" class="ajax_box">

 <form:form name="${self.uid}" commandName="command${self.uid}"
 enctype="multipart/form-data">

 <!-- include XSRF token–->
 <fcs:xsrfToken/>
 ...
 </form:form>
</div>

In addition to the form template, the XSRF token must also be inserted into all URLs
that reference a Formcentric controller. Currently, these are FormController, FileU-
ploadController and RestController.

The following example shows you how to insert the XSRF token in the fileUpload.jsp
template into the upload URL as a URL parameter.

<%@ taglib prefix="form"
 uri="http://www.springframework.org/tags/form"%>
<%@ taglib prefix="fcs"
 uri="http://www.formcentric.com/web-security-1.0" %>
<%@ taglib prefix="c"
 uri="http://java.sun.com/jsp/jstl/core" %>

<!-- Upload-URL zusammenbauen und in Variable speichern -->
<c:url value="/servlet/upload" var="uploadUrl">
 <c:param name="_uid" value="${form.uid}"/>
 <c:param name="_lang" value="${form.lang}"/>
 <fcs:xsrfTokenParam method="POST"/>
</c:url>

<c:set var="id" value="${self.id}_${form.uid}"/>

<div class="mwf-upload"
 data-mwf-fileupload='{
 "url":"${uploadUrl}",
 "id":"${id}",
 "name":"${self.name}",
 "autoUpload": ${self.properties['auto_upload']},
 "labels": ${rowLabels},
 "previewMaxWidth": "90",
 "previewMaxHeight": "90"
 }'>

...

Formcentric for FirstSpirit | Developer Manual 89

The upload URL is created with the help of the JSP <c:url> tag. You use the
<fcs:xsrfTokenParam> tag to add an XSRF token parameter to the URL. As with the
JSP tag <c:param>, this can be used together with the <c:url> tag (see the section
called “fcs:xsrfTokenParam”).

You configure the security filter in the web application's deployment descriptor
(web.xml). In the mapping rules, specify all of the Formcentric controllers for which
the filter should be used.

<filter>
 <filter-name>webSecurityFilter</filter-name>
 <filter-class>com.formcentric.security.
 SecurityServletFilter</filter-class>
 <init-param>
 <param-name>xsrfPrevention</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>xsrfMethods</param-name>
 <param-value>POST</param-value>
 </init-param>
 <init-param>
 <param-name>xsrfSessionBased</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>xsrfTokenName</param-name>
 <param-value>_mwfToken</param-value>
 </init-param>
 <init-param>
 <param-name>xssPrevention</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>webSecurityFilter</filter-name>
 <url-pattern>/servlet/form/*</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>webSecurityFilter</filter-name>
 <url-pattern>/servlet/rest</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>webSecurityFilter</filter-name>
 <url-pattern>/servlet/upload</url-pattern>
</filter-mapping>

The servlet filter has the following configuration settings.

Parameter Description

xsrfPrevention Enables XSRF protection (true, false).

Formcentric for FirstSpirit | Developer Manual 90

Parameter Description

xsrfMethods Comma-separated list of HTTP methods (GET, POST)
that should be secured using an XSRF token.

xsrfSessionBased Use this parameter to specify whether the XSRF token
should be renewed on each page reload (true) or just
once per user session (false).

xsrfTokenName Base name of the request parameter in which the
current XSRF token will be passed. In the default
configuration, the name com.formcentric.XSRFToken
is used. The base name is automatically extended by
the ID of the associated form.

xssPrevention Enables XSS protection (true, false).

The security servlet filter can be configured only once per web application.

6.5.6. Saving the form status

As standard, all of the data entered by the user is saved in the user session on the
server. If forms are complex, however, the session may expire before the user has
finished completing and sending the form. In this case, the data items stored in the
session are lost.

Formcentric therefore offers you the option of saving the entered data for a longer
period of time. This means users can take a break from form entry and continue filling
out the form at a later point in time.

To activate this function, configure a FormStateStore in the formcen-
tric-controllers.xml Spring configuration file.

<bean id="defaultFormCommandBeanFactory"
 class="com.formcentric.logicbeans.DefaultFormCommandBeanFactory">
 ...
 <property name="formStateStore" ref="formStateStore"/>
</bean>

Formcentric offers you two separate store implementations:

BackendFormStateStore

This implementation stores the form data in the Analytics Backend database. For
each data record, a unique ID is generated and stored both in the database and in
a cookie file. The cookie's lifetime, domain and path can be specified in the Spring
configuration.

<bean id="formStateStore"
 class="com.formcentric.store.BackendFormStateStore">

Formcentric for FirstSpirit | Developer Manual 91

 <property name="cookiePath" value="/" />
 <property name="cookieDomain" value="my-domain.com" />
 <property name="cookieMaxAge" value="604800" />
 <property name="backendClient" ref="backendClient" />
</bean>

FileFormStateStore

This implementation stores the form data in an encrypted file on the server. The asso-
ciated file name is stored in a cookie. The cookie’s directory, encryption password,
lifetime, domain and path can all be specified in the Spring configuration.

<bean id="formStateStore"
 class="com.formcentric.store.FileFormStateStore">

 <property name="cookiePath" value="/" />
 <property name="cookieDomain" value="my-domain.com" />
 <property name="cookieMaxAge" value="604800" />
 <property name="secret" value="change-this-now" />
 <property name="storageDir" value="/var/webforms" />
</bean>

The user account used to start the application server must possess write permissions
for this directory. If not otherwise specified, the directory configured in the system
variable java.io.tmpdir is used. In a clustered environment, the directory must also be
accessible to all instances of the web application.

6.5.7. Implementing an action

As already described, the business logic for form data processing is encapsulated by
actions in the web application. From a technical perspective, these are classes that
implement the com.formcentric.actions.Action interface. Additional business beans
can be injected into an action via Spring. In this way, data access objects (DAOs) can
be made available in order to access external databases, for example. The actions
are injected into the form controller via Spring when the application starts.

Variable action parameters, which must be entered by the form author when creating
the form (such as the target address for the mail action), are passed to the action
implementation via the properties map of the ActionNode bean.

The following example shows you how you can implement and configure the Custom-
Action described in section Section 6.3.1, “Developing a NodeEditorPane”.

public class CustomAction extends BaseAction<WebForm> {

 public static final String PROP_CUSTOM = "customProperty";

 @Override
 public ModelAndView execute(ExecutionContext<WebForm> context, Map<String,
 Object> formData) throws Exception {

Formcentric for FirstSpirit | Developer Manual 92

 WebForm formDefinition = context.getFormDefinition();
 ActionNode action = context.getAction();

 String customParam = action.getPropertyAsString(PROP_CUSTOM);

 // Business logic
 ...

 // ModelAndView
 ModelAndView mv = new ModelAndView("success");
 mv.addObject(Constants.ATTRIBUTE_SELF, formDefinition);
 return mv;
 }

 @Override
 public boolean isExecutable(ExecutionContext<WebForm> context,
 Map<String, Object> formData) throws Exception {
 return true;
 }
}

When called via the execute method, the action is given all of the available data.
In addition to the actual form data, ExecutionContext passes the form definition, the
action definition, the form variables (see Section 6.5.8, “Adding variables for pre-filling
form fields”) and the request object. The parameters map contains only the values of
the visible form elements. Access to all form data is provided by calling the method
getRawFormData() on the ExecutionContext bean.

The execute method must return an object of the ModelAndView type. This is used in
order to present the results page, as shown to the user after data has been submitted.

Typically, the ModelAndView object is generated with the form bean and a specialised
view (such as success).

In addition, however, there is also the option of redirecting the request to another
page. In this case, the ModelAndView object can be generated as follows:

ModelAndView mv = ControllerUtils.redirectTo(renderBean, viewName);

The renderBean object and the view name can be generated by the specialised busi-
ness logic of the action implementation.

In some application scenarios, errors in the input data are discovered only during
processing by the associated backend. In this case, the user should not be presented
with the results page but should be given the form again, along with an error message.
To achieve this, the action – in the same way as with validators – should create an
error on the Errors bean passed in the ExecutionContext.

public ModelAndView execute(ExecutionContext<WebForm> context, Map<String,
Object> formData) throws Exception {
 ...
 context.getErrors().rejectValue("username", DUPLICATE_USER_ERROR,
 "This username is already in use.");

Formcentric for FirstSpirit | Developer Manual 93

 ModelAndView mv = new ModelAndView("success");
 mv.addObject("self", formDefinition);
 return mv;

Enter the action into the Spring configuration formcentric-actions.xml:

<bean name="customAction" class="com.custom.forms.web.CustomAction">

 <!-- benötigte Properties -->
 ...

</bean>

In the Spring configuration formcentric-controllers.xml, also add the following to the
action mapping:

<bean id="formCommandBeanFactory"
 class="com.formcentric.logicbeans.DefaultFormCommandBeanFactory">

 <!-- Mapping von Action-Namen auf Action-Implementierungen -->
 <property name="actionMapping">
 <map>
 <entry key="mailAction" value-ref="mailAction"/>
 <entry key="customAction" value-ref="customAction"/>
 </map>
 </property>
 ...

</bean>

6.5.8. Adding variables for pre-filling form fields

To pre-fill form fields, the form author can make use of a range of predefined vari-
ables. As standard, the form author can use the variables date, time, language, ip,
remoteUser, principal, userAgent and referer.

To provide custom variables, you need to override the method getVariables() on the
FormCommandBean.

public class CustomFormCommandBean extends DefaultFormCommandBean {

 @Override
 protected Map<String, Object> getVariables(HttpServletRequest request,
 WebForm formDefinition) {

 Map<String, Object> variables =
 super.getVariables(request, formDefinition);

 // eigene Variablen hier einfügen
 ...

 return variables;
 }

Formcentric for FirstSpirit | Developer Manual 94

}

To instantiate the new CustomFormCommandBean, you will also need to override
the FormCommandBean factory and enter this into the configuration formcen-
tric-controllers.xml.

public class CustomCommandBeanFactory extends DefaultFormCommandBeanFactory {

 @Override
 public CustomFormCommandBean createBeanFor(WebForm formDefinition) {

 CustomFormCommandBean commandBean = new CustomFormCommandBean();
 initCommandBean(commandBean, formDefinition);

 return commandBean;
 }
}

Replace the DefaultFormCommandBeanFactory in the Spring configuration formcen-
tric-controllers.xml with the CustomCommandBeanFactory:

<bean id="formCommandBeanFactory"
 class="com.custom.forms.web.CustomCommandBeanFactory"
 ...

The form fields are initialised with the predefined pre-filled values once only,
when the form is called for the first time. This also replaces the variables
with their values. Accordingly, subsequent changes to variable values are
not applied to an already-initialised form.

6.5.9. Implementing a REST service
Formcentric includes a REST interface, which you can use to fill drop-down lists
or input fields at runtime with data from external systems. The data concerned can
be static, dynamic or specific to the user. All of the interface’s specialised functions
are encapsulated in classes of the com.formcentric.rest.RestService type. By imple-
menting your own REST service, you can extend the interface to include additional
functionality. The following example shows you a REST service that generates a map
with static key/value pairs.

public class CustomRestService extends BaseRestService {

 @Override
 public Object invoke(ServiceContext<WebForm> context, Map<String,
 Object> remoteFormData, Map<String, Object> localFormData) {

 String myCustomParam =
 context.getConfigParameterMap().get("myCustomParam");
 ...

 HashMap<String, String> data = new HashMap<String, String>();

Formcentric for FirstSpirit | Developer Manual 95

 // Map füllen
 data.put("key1", "value1");
 data.put("key2", "value2");
 data.put("key3", "value3");

 return data;
 }
}

By calling the invoke method, the RestService is passed both the ServiceContext as
well as the user input already sent (remoteFormData parameter) and the user input
not yet sent (localFormData parameter). This enables you to react directly to user
input, regardless of whether or not this input has already been sent.

The ServiceContext also gives you access to the form definition, the input element,
the configuration parameters for the RestService and the request object.

Enter the REST service into the Spring configuration formcentric-services.xml:

<bean name="customRestService"
 class="com.custom.forms.web.CustomRestService">

 <!— benötigte Properties -->
 ...

</bean>

Also add the service to the REST controller’s service mapping in the Spring configu-
ration file formcentric-controllers.xml:

<bean id="restController"
 class="com.formcentric.controllers.RestController">
 <property name="prefix" value="/rest" />
 <property name="commandNamePrefix" value="command" />

 <property name="restServiceMapping">
 <map>
 <entry key="Example" value-ref="exampleRestService"/>
 ...
 </map>
 </property>
</bean>

The service is accessed via the URL:

<context-path>/servlet/rest?_service=Example&_uid=<Dokument-ID>&
 _input=<Input-Name>

The following JSON string is returned as the response to this call:

[
 {
 "k":"key1",

Formcentric for FirstSpirit | Developer Manual 96

 "v":"value1",
 "i":"mwf6aab0bb24033",
 "h":"8d0c3e13950d86c1a7383f066105f78c"
 },
 {
 "k":"key2",
 "v":"value2",
 "i":"mwf06a7a0930d37",
 "h":"d22d445101243a5f616cfd64c765e399"
 },
 {
 "k":"key3",
 "v":"value3",
 "i":"mwf1674ffb0a121",
 "h":"c0ad1fa77bb1b79ca757ee1ffce9f416"
 }
]

To prevent manipulation of the JSON data so transmitted, the individual key/value
pairs are secured using an additional hash value that is validated on the server during
form submission.

This security mechanism means that no calls may be made to external REST services,
since their data does not contain the required hash values. If you need to access
external services, however, you can implement your own proxy REST service, which
in turn accesses the external REST service.

From version 2.3 of Formcentric onwards, REST service calls within JSP templates
are made using the HTML attribute data-mwf-datasource. In the attribute value, you
must specify a JSON object that contains the URL of the REST service, the usage
type (checkbox, radio, selection, suggestion or hidden) and any other parameters.

As standard, you can specify a REST service for the following input elements:

inputField:

<c:url value="/servlet/rest" var="restUrl">
 <c:param name="_service" value="${self.properties['datasource']}"/>
 <c:param name="_uid" value="${form.uid}"/>
 <c:param name="_input" value="${self.name}"/>
 <fcs:xsrfTokenParam/>
</c:url>

<c:set var="params" value="${self.properties['datasource_params']}"/>

<form:input data-mwf-id="${self.id}"
 data-mwf-datasource='{
 "type" : "suggestion",
 "url" : "${restUrl}",
 "data" : {},
 "params" : ${params}
 }' ... />

hiddenField:

Formcentric for FirstSpirit | Developer Manual 97

<c:url value="/servlet/rest" var="restUrl">
 <c:param name="_service" value="${self.properties['datasource']}"/>
 <c:param name="_uid" value="${form.uid}"/>
 <c:param name="_input" value="${self.name}"/>
 <fcs:xsrfTokenParam/>
</c:url>

<c:set var="params" value="${self.properties['datasource_params']}"/>

<form:hidden path="${self.name}" data-mwf-id="${self.id}"
 data-mwf-datasource='{
 "type" : "hidden",
 "url" : "${restUrl}",
 "data" : {},
 "params" : ${params}
 }' ... />

comboBox:

<![CDATA[<c:url value="/servlet/rest" var="restUrl">
 <c:param name="_service" value="${input.properties['datasource']}"/>
 <c:param name="_uid" value="${form.uid}"/>
 <c:param name="_input" value="${input.name}"/>
 <fcs:xsrfTokenParam/>
</c:url>

<fc:valueOut var="userValue" name="${input.name}"/>
<c:set var="strUserValue" value="${fn:join(userValue,',')}"/>
<c:set var="params" value="${input.properties['datasource_params']}"/>

<form:select data-mwf-id="${self.id}"
 data-mwf-datasource='{
 "type" : "selection",
 "url" : "${restUrl}",
 "preselected" : "${strUserValue}",
 "data" : {},
 "params" : ${params}
 }' ... >
 ...
</form:select>

checkBoxGroup:

<c:url value="/servlet/rest" var="restUrl">
 <c:param name="_service" value="${input.properties['datasource']}"/>
 <c:param name="_uid" value="${form.uid}"/>
 <c:param name="_input" value="${input.name}"/>
 <fcs:xsrfTokenParam/>
</c:url>

<fc:valueOut var="userValue" name="${input.name}"/>
<c:set var="strUserValue" value="${fn:join(userValue,',')}"/>
<c:set var="params" value="${input.properties['datasource_params']}"/>

<fieldset data-mwf-id="${self.id}"

Formcentric for FirstSpirit | Developer Manual 98

 data-mwf-datasource='{
 "name" : "${input.name}",
 "type" : "checkbox",
 "url" : "${restUrl}",
 "preselected" : "${strUserValue}",
 "data" : {},
 "params" : ${params}
 }' ... >
 ...
</fieldset>

radioGroup:

<c:url value="/servlet/rest" var="restUrl">
 <c:param name="_service" value="${self.properties['datasource']}"/>
 <c:param name="_uid" value="${form.uid}"/>
 <c:param name="_input" value="${self.name}"/>
 <fcs:xsrfTokenParam/>
</c:url>

<fc:valueOut var="userValue" name="${self.name}"/>
<c:set var="strUserValue" value="${fn:join(userValue,',')}"/>
<c:set var="params" value="${self.properties['datasource_params']}"/>

<fieldset data-mwf-id="${self.id}"
 data-mwf-datasource='{
 "name" : "${self.name}",
 "type" : "radio",
 "url" : "${restUrl}",
 "preselected" : "${strUserValue}",
 "data" : {},
 "params" : ${params}
 }' ... >
 ...
</fieldset>

Since the double quotation mark must be used within the JSON string, you
must use the single quotation mark for the HTML attribute.

As described previously, both the form input that has been sent and the form input
not yet sent is available to you within the RestService. As one example of how to use
this function, you could implement a RestService that takes a postcode entered by
the user and returns a drop-down list of locations matching the postcode.

In this example, it would be advisable to update the drop-down list automatically if the
user changes the postcode, since other locations may be referenced by the changed
postcode. This can be achieved by using the parameter dependsOn. In the form
editing interface, this can entered into the parameter list of a RestService (see also
section 3.2.5 in the User Manual). The value to be entered here must specify the
name of the input element on which the result of the selected RestService depends.
Every change made to one of the input elements specified results in another call to
the RestService.

Formcentric for FirstSpirit | Developer Manual 99

6.5.10. Template development

The output of the forms and form elements is handled by FreeMarker or JSP templates
within the web application.

In the standard configuration, Formcentric is set up to use JSP templates. To
reconfigure the web app to use FreeMarker templates, you need to import the
formcentric-views-freemarker.xml configuration into the Spring configuration form-
centric-views.xml instead of the formcentric-views-jsp.xml configuration.

At the data level (model), all form elements are represented by an object of the
com.formcentric.model.xml.InputNode type. To access the properties id, type, name,
label, value, parent and children, you can use the corresponding getter methods on
the InputNode bean. Access to all other properties is performed using the properties
map from the InputNode bean.

The following table shows you all of the form element types and their properties. The
properties shown in square brackets must be read from the properties map.

Element Properties

form name, [style_class, form_style_class, next_label, submit_label,
cancel_label, script, description, save_state, save_statistics,
doi_to, doi_note, doi_message, doi_from, doi_sender,
doi_subject, doi_enabled, doi_format, doi_condition,
doi_condition_conjunction]

inputField name, label, value, [hint, placeholder, field_width, style_class,
readonly, maxlength, datasource, datasource_params]

shortText name, label, value, [hint, placeholder, field_width, style_class,
readonly, maxlength]

emailField name, label, value, [hint, placeholder, field_width, style_class,
readonly]

numberField name, label, value, [hint, placeholder, field_width, style_class,
readonly, maxlength]

dateField name, label, value, [hint, placeholder, field_width, style_class,
readonly, maxlength]

phoneField name, label, value, [hint, placeholder, field_width, style_class,
readonly, maxlength]

textArea name, label, value, [hint, placeholder, field_width, style_class,
readonly, maxlength, rows, cols]

passwordField name, label, [hint, placeholder, field_width, style_class]

button name, label, [hint, field_width, style_class, onclick]

checkBoxGroup name, label, children, [pictureUrl, pictureFileName,
hint, field_width, style_class, datasource, dynamic,
datasource_params]

Formcentric for FirstSpirit | Developer Manual 100

Element Properties

comboBox name, label, value, children, [pictureUrl, pictureFile-
Name, hint, field_width, style_class, datasource, dynamic,
datasource_params]

picture name, [pictureUrl, pictureFileName, alt, field_width, style_class]

pageBreak name, label, [style_class, condition, next_label, back_label,
script]

paragraph name, value, [bold, italic, field_width, style_class]

captcha name, label, [field_width, hint]

radioGroup name, label, children, [pictureUrl, pictureFileName,
hint, field_width, style_class, datasource, dynamic,
datasource_params]

summary label, [style_class, elements, hide_empty_fields]

hiddenField name, value, [datasource, datasource_params]

fileUpload name, [multiple, auto_upload, hint, field_width, style_class]

condition [condition, condition_conjunction, conditional_fields]

pageCondition [condition, condition_conjunction, next_page, script]

layout label, [layout]

fieldSet name, label, [style_class]

calculatedValue name, label, [script, visible, clientside, style_class]

mailAction [subject, to, cc, bcc, from, sender, body, format, note,
replyto, send_hidden_fields, condition, condition_execute,
condition_conjunction, redirect_url, hide_empty_fields]

dataSourceAction [note, schema, table, datasource_mapping, commit_message,
release, condition, condition_execute, condition_conjunction]

mediaStoreAction [note, mediastore_mapping, commit_message, release, condi-
tion, condition_execute, condition_conjunction]

pdfAction [note, pdfFileName, pdfPath, pdfUid, pdfUrl,
field_mapping, linktext, readonly, condition, condition_execute,
condition_conjunction]

datastoreAction [note, condition, condition_execute, condition_conjunction]

redirectAction [note, condition, condition_execute, condition_conjunction, url,
content, delay]

webhookAction [note, condition, condition_execute, condition_conjunction, url,
fields, url_parameters, custom_headers, content_type]

sequenceAction -

Formcentric for FirstSpirit | Developer Manual 101

In addition to the InputNode beans described above, the system passes other objects
in the request to the form templates. The following table gives you an overview of all
objects passed.

Parameter name Type Description

self com.formcentric.model.WebForm Current form docu-
ment bean

input com.formcentric.model.xml.InputNode Current form
element bean

pageElements java.util.List List with the
elements of the
current form page

pageCount java.lang.Integer Number of form
pages

form com.formcentric.model.WebForm Form definition

currentPage java.lang.Integer Page number of the
current form page

currentPageN-
ode

com.formcentric.model.xml.InputNode Current form page
bean

formdata java.util.Map Map containing the
form data entered
by the user

FreeMarker templates

The FreeMarker templates are stored in the directory /WEB-INF/templates/ftl. Along-
side the parent form template, each form element type is also assigned its own
template. The example below shows you the textArea.ftl template for the multi-line
text input field:

<li data-mwf-container="${self.id}"
 class="mwf-field ${self.properties['style_class']!""}">
 <label class="mwf-label" for="${self.id}">${self.label!""}
 <#if self.required>*</#if>
 </label>
 <div class="mwf-input">

 <@spring.bind mwf.bind(self)/>
 <#assign hasErrors=spring.status.error />
 <textarea id="${self.id}"
 class="mwf-text ${self.properties['style_class']!""}"
 name="${spring.status.expression!""}"
 ${self.properties['readonly']?boolean?then("readonly", "")}
 maxlength="${self.properties['maxlength']!""}"
 spellcheck="true"
 placeholder="${self.properties['placeholder']!""}"
 rows="${self.properties['rows']!""}"

Formcentric for FirstSpirit | Developer Manual 102

 cols="${self.properties['cols']!""}"
 data-mwf-id="${self.id}">${spring.status.value!""}</textarea>
 <#if self.properties['hint']?has_content>
 <div class="mwf-hint">
 <@fc.markdown value=(self.properties['hint']!"")?string />
 </div>
 </#if>
 <@spring.showErrors separator="<p>" classOrStyle="mwf-error"/>
 </div>

FreeMarker functions and macros

Formcentric provides you with a FreeMarker library that contains specialised functions
for displaying the forms.

To utilise these functions, insert the following instruction into the FreeMarker
templates:

<#import "/lib/formcentric.com/webforms.ftl" as mwf>

The following section gives you a description of the functions contained in this library.

fc.forEachPageElement

List function that contains the elements on the current page.

forEachPageElement(boolean layoutFacets, boolean removeEmptyFacets,
 final String exclude, final String include)

Parameter Description

layoutFacets If this value is set to true, the elements will be split across
layoutFacets (optional).

removeEmpty-
Facets

Specifies whether empty layouts should be ignored when
creating the list (optional).

Default value: false

exclude Comma-separated list of the element types that should be
ignored when creating the list. If nothing is specified here,
then all element types – with the exception of excluded types
– are included (optional).

include Comma-separated list of element types that should be
included when creating the list (optional).

<#list mwf.forEachPageElement(true, false, "condition", "") as layout>
 <ul class="${layout.properties['layout']!""}">

 <#if layout_index == 0 && currentPage == 0 && self.label?has_content>
 <li class="mwf-field"><h3>${self.label!""}</h3>

Formcentric for FirstSpirit | Developer Manual 103

 </#if>

 <#list layout.items as input>
 <@fc.include self=input view=input.type />
 </#list>

</#list>

fc.forEachPage

List function that returns a list of the collected pages.

forEachPage(final boolean compact)

Parameter Description

compact Specifies whether form pages with the same title should be
consolidated together (optional).

Default value: false

fc.include

Macro that includes a bean with a certain template.

<@fc.include self=input view=input.type />

Attribute Description

self Bean that is included.

view Name of the template to be included.

params An extended hash that you can use to pass additional para-
meters to the included template (optional).

fc.url

Function that can be used to generate absolute URLs on the Formcentric controller.

If nothing is specified in the baseUrl parameter, then the generated URL points to the
Formcentric web app in which the FreeMarker template was called.

This function is helpful if you want to install the Formcentric web application on a host
separate to the one hosting the surrounding web page, since in this case you are
unable to use relative URLs.

Parameter Description

base Specifies the Formcentric controller.

params An extended hash that you can use to pass additional para-
meters to the URL (optional).

Formcentric for FirstSpirit | Developer Manual 104

Parameter Description

baseUrl Fully-qualified hostname, such as https://
your.domain.com:8000 (optional).

<#assign restUrl=fc.url("/servlet/rest", {
 "_uid": form.uid,
 "_input": self.name,
 "_service": self.properties['datasource'],
 fc.xsrfTokenName(form.uid): fc.xsrfTokenValue(form.uid)
}) />

fc.responseHeader

Macro that you can use to set a header in the response.

<@fc.responseHeader name="Content-Type"
 value="text/html; charset=UTF-8"/>

fc.summary

Function that returns a list of all elements as a com.formcentric.model.InputBean for
the form. This can also be used to query the data entered by the user.

This can be used to query the following properties:

name Form element name

label Form element label.

type Form element type.

object Form element value bean.

value String representation of the value bean.

valueLabels String array containing the labels of the options chosen in the
selection field (comboBox, radioGroup, checkboxGroup). If the
associated input element is not a selection, then the value of
the element is returned in the array.

page Number of the page on which the element is located.

pageLabel Label of the page on which the element is located.

layout Name of the layout in which the element is located.

input InputNode of the element.

summary(InputNode self, String elements,
 final String include, final String exclude,
 final boolean hideEmptyFields, final String excludeIfEmpty)

Parameter Description

self InputNode of a form element.

Formcentric for FirstSpirit | Developer Manual 105

Parameter Description
If this value is set, then the iteration is interrupted at the speci-
fied element.

elements Comma-separated list containing the names of the form
elements that should be shown in the summary. If this
attribute contains a value, then the attribute self is ignored
(optional).

include Comma-separated list of element types that should be consid-
ered during iteration. If nothing is specified here, then all
element types – with the exception of excluded types – are
included (optional).

exclude Comma-separated list of element types that should be ignored
during iteration (optional).

Default value: button, hiddenField, condition, pageCondition,
pagebreak, captcha, passwordField

hideEmptyFields Specifies that all empty fields should be ignored.

Default value: false

excludeEmpty-
Fields

Specifies that empty fields should be ignored (optional).

Default value: false

<#list mwf.summary(self, self.getPropertyAsString('elements'),
 self.getPropertyAsBoolean('hide_empty_fields', false)) as item>
 <tr>
 <#if item.input.type == "paragraph">
 <td colspan="2">
 <@fc.markdown>${item.input.value}</@fc.markdown>
 </td>
 <#else>
 <td>${item.label?has_content?then(item.label, item.name!"")}</td>
 <td>${(item.valueLabels![])?join(", ")}</td>
 </#if>
 </tr>
</#list>

fc.captcha

Template that you can use to generate a captcha image.

Attribute Description

url URL of the captcha servlet.

id ID of the captcha InputNode.

linkClass CSS class(es) that is/are applied to the link to the captcha
image (optional).

Default value: ""

Formcentric for FirstSpirit | Developer Manual 106

Attribute Description

imgClass CSS class(es) that is/are applied to the captcha image
(optional).

Default value: ""

title The title attribute for the captcha image (optional).

Default value: ""

alt The alt attribute for the captcha image (optional).

Default value: Captcha

<#assign captchaUrl=mwf.url("/servlet/captcha/captcha.jpg")!"" />
<@fc.captcha url=captchaUrl id=self.id linkClass="css-class__link"
 imgClass="css-class__img" title="A title" alt="Captcha" />

fc.ifCaptcha

Boolean function that evaluates whether the captcha name has not been entered
correctly.

Parameter Description

name Name of the captcha element.

<#if fc.ifCaptcha(self.name!"")>
 <#assign captchaUrl=mwf.url("/servlet/captcha/captcha.jpg")!"" />
 <@fc.captcha url=captchaUrl id=self.id />
</#if>

fc.hasCaptcha

Boolean function that evaluates whether the form contains a captcha element.

Parameter Description

form The form element.

<#if fc.hasCaptcha(self)>
 <!-- markup that only renders
 if a captcha is present -->
</#if>

fc.getStandardButton

Function that supplies the standard form button determined by the buttonType
attribute.

Parameter Description

buttonType Standard button type. Can be set to the following values:

Formcentric for FirstSpirit | Developer Manual 107

Parameter Description

_next Button that takes the user to the next page of the
form.

_back Button that takes the user to the previous page of
the form.

_cancel Button that cancels form data entry.

_finish Button that submits the form.

_exit Button that can be used to exit from the form.

<#assign finishButton=mwf.getStandardButton("_finish") />
<li data-mwf-container="${finishButton.id}" class="mwf-button mwf-next">
 <input type="button" value="${submitLabel}"
 data-mwf-submit='{"type":"finish",
 "query": "navigationId=${cmpage.navigation.contentId}"}'/>

fc.valueOut

Function that can be used to output the current value of a form field.

valueOut(String name, boolean preferLabel)

Parameter Description

name Form field name

preferLabel Specifies that the value's label should be output instead of the
value itself (optional).

${fc.valueOut(self.name!"", true)!""}

fc.conditions

Function with which the JavaScript definitions can be generated for conditional
elements. Place this function at the end of the form template.

<#assign conditions=mwf.conditions() />

fc.calculatedValues

Function that generates the JSON definitions for the calculated values.

<#assign calculatedValues=mwf.calculatedValues() />

fc.markdown

Macro that can be used to output a value interpreted using markdown. This macro
can handle both a passed value (see value parameter) or a body.

Formcentric for FirstSpirit | Developer Manual 108

Parameter Description

value Value to be interpreted using markdown (optional).

inline Specifies whether the output HTML should be restricted to
inline elements (optional).

Default value: false

<@fc.markdown value=self.value!"" inline=false />
<#-- or -->
<@fc.markdown inline=false>${self.value!""}</@fc.markdown>

fc.vars

Macro that can be used to replace variables from the form context in the output.

Parameter Description

map Map with the form data.

<@fc.vars map=formdata>${action.properties['note']!""}</@fc.vars>

fc.bind

Function that returns the path to which the node is bound.

Parameter Description

node InputNode whose path is being queried.

<@spring.bind mwf.bind(self) />

fc.encodeUrl

Function that encodes the URL passed in UTF-8.

Parameter Description

url URL that is to be encoded.

fc.hasValidator

Function that checks whether the validator specified by the name parameter is present
in the InputNode node.

Parameter Description

node InputNode that is to be evaluated.

Formcentric for FirstSpirit | Developer Manual 109

Parameter Description

name Name of the validator.

fc.validatorByName

Function that returns the validator specified in the name parameter of the InputNode
node.

Parameter Description

node InputNode that is to be evaluated.

name Name of the validator.

fc.elementByName

Function that returns the InputNode specified in the name parameter for the form form.

Parameter Description

form Form that contains the InputNode.

name Name of the element.

Security library

Formcentric includes a security library for the generation and output of XSRF tokens
(see Section 6.5.5, “Web security”). This security library is also included by the inte-
gration of the FreeMarker functions.

The FreeMarker functions that are included are described below.

fc.xsrfToken

Macro that generates a hidden form field with an XSRF token.

<@fc.xsrfToken />

fc.xsrfTokenName

Function that generates an xsrfTokenName from the form ID.

Parameter Description

formId ID of the form for which the token should be generated. If this
parameter is empty, the form ID passed in the request is used
(optional).

<#assign restUrl=mwf.url("/servlet/rest", {"_uid": form.uid, ...,
 "tokenName": fc.xsrfTokenName(), "tokenValue": fc.xsrfTokenValue()})!""/>

Formcentric for FirstSpirit | Developer Manual 110

fc.xsrfTokenValue

Function that generates an xsrfTokenValue from the form ID.

Parameter Description

formId ID of the form for which the token should be generated. If this
parameter is empty, the form ID passed in the request is used
(optional).

<#assign restUrl=mwf.url("/servlet/rest", {"_uid": form.uid, ...,
 "tokenName": fc.xsrfTokenName(), "tokenValue": fc.xsrfTokenValue()})!""/>

JSP templates

The JSP templates are stored in the directory /WEB-INF/templates/jsp. Alongside the
parent form template, each form element type is also assigned its own template. The
example below shows you the textArea.jsp template for the multi-line text input field:

<%@ page contentType="text/html;charset=UTF-8" language="java"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<jsp:useBean id="self" type="com.formcentric.model.xml.InputNode"
 scope="request"/>
<jsp:useBean id="form" type="com.formcentric.model.WebForm"
 scope="request"/>

<c:set var="id" value="${self.id}_${form.uid}"/>
<mwf:hasErrors var="hasErrors" path="${self.name}"/>
<li data-mwf-container="${id}" class="mwf-field">
 <label class="mwf-label" for="${id}">
 <c:out value="${self.label}"/>
 <c:if test="${self.required}">
 *
 </c:if>
 </label>
 <div class="mwf-input">
 <form:textarea id="${id}" path="${self.name}"
 cssClass="mwf-text ${self.properties['field_width']}"
 readonly="${self.properties['readonly']}"
 maxlength="${self.properties['maxlength']}"
 spellcheck="true"
 rows="${self.properties['rows']}"
 cols="${self.properties['cols']}"
 data-mwf-id="${id}"
 placeholder="${self.properties['placeholder']}"/>
 <c:if test="${not empty self.properties['hint']}">
 <p class="mwf-hint">
 <small><c:out value="${self.properties['hint']}"/></small>
 </p>
 </c:if>
 <form:errors path="${self.name}" cssClass="mwf-error" element="p"/>

Formcentric for FirstSpirit | Developer Manual 111

 </div>

Taglib formcentric-1.0

Formcentric provides you with a tag library that contains specialised tags for
displaying the forms.

To utilise this taglib, insert the following instruction into the JSP template:

<%@taglib prefix="fc" uri="http://www.monday-consulting.com/webfoms-1.0"%>

The following section gives you a description of the tags contained in this library.

fc:forEachPageElement

Iterator tag, which you can use to iterate over the individual elements in a form page.
In the process, the current form element is passed in the control variable.

Attribute Description

var Name of the control variable that contains the current form
element.

varStatus Iteration status.

exclude Comma-separated list of element types that should be ignored
during iteration. If nothing is specified here, then all element
types – with the exception of excluded types – are considered.

include Comma-separated list of element types that should be consid-
ered during iteration.

layoutFacets Specifies whether form elements should be grouped by
layout for output. In this case, the control variable contains
the current layout. Note that this is a bean of the type
PageIterateTag.LayoutFacet. This can be used to query the
following properties:

layout Layout descriptor

items List containing form elements assigned to this
layout.

Default value: false

removeEmpty-
Facets

Specifies whether empty layouts should be ignored during iter-
ation.

Default value: false

<mwf:forEachPageElement var="input"
 exclude="pageBreak,calculatedValue,condition">
 <mwf:include self="${input}" view="${input.type}"/>
</mwf:forEachPageElement>

Formcentric for FirstSpirit | Developer Manual 112

<mwf:forEachPageElement var="layout" varStatus="s" layoutFacets="true"
 exclude="pageBreak,calculatedValue,condition">

 <c:choose>

 <%-- einspaltiges Layout --%>
 <c:when test="${empty layout.layout or layout.layout eq '1'}">
 <fieldset class="onecolumn">
 <c:forEach items="${layout.items}" var="input" varStatus="i">
 <mwf:include self="${input}" view="${input.type}"/>
 </c:forEach>
 </fieldset>
 </c:when>

 <%-- mehrspaltiges Layout --%>
 <c:when test="${not empty layout.layout and layout.layout eq '2'}">
 <fieldset class="twocolumn">
 <c:forEach items="${layout.items}" var="input" varStatus="i">
 <mwf:include self="${input}" view="${input.type}"/>
 </c:forEach>
 </fieldset>
 </c:when>

 </c:choose>
</mwf:forEachPageElement>

fc:forEachPage

Iterator tag, which you can use to iterate over the pages in a form. The page title and
other items of status information are passed in the control variable.

Attribute Description

var Name of the control variable, which contains a bean of the type
ForEachPageTag.Item. This can be used to query the following
properties:

label Form page label

index Page number

selected Specifies whether the associated form page is currently
being shown.

finished Specifies whether the associated form page has already
been filled out.

varStatus Iteration status.

compact Specifies whether form pages with the same title should be
consolidated together.

Default value: false

<mwf:forEachPage var="page" varStatus="status">

Formcentric for FirstSpirit | Developer Manual 113

 <c:set var="class" value="${entry.selected ? 'selected' : ''}"/>

 <c:out value="${status.index}"/>. <c:out value="${page.label}"/>

</mwf:forEachPage>

fc:summary

Tag that you can use to iterate over all of the elements in a form. Alongside the
element properties name, type and label, the value entered by the user is also passed
in the control variable.

Attribute Description

var Name of the control variable, which contains a bean of the type
com.formcentric.model.InputBean. This can be used to query
the following properties:

name Form element name

label Form element label

type Form element type

object Form element value bean

value String representation of the value bean

valueLabels String array containing the labels of the options
chosen in the selection field (comboBox, radi-
oGroup, checkboxGroup). If the associated
input element is not a selection, then the value
of the element is returned in the array.

page Number of the page on which the element is
located.

pageLabel Label of the page on which the element is
located.

layout Name of the layout in which the element is
located.

input InputNode of the element.

varStatus Iteration status.

elements Comma-separated list containing the names of the form
elements that should be shown in the summary. If this
attribute contains a value, then the attribute self is ignored.

self InputNode of a form element.

If this value is set, then the iteration is interrupted at the speci-
fied element.

include Comma-separated list of element types that should be consid-
ered during iteration. If nothing is specified here, then all

Formcentric for FirstSpirit | Developer Manual 114

Attribute Description
element types – with the exception of excluded types – are
considered.

exclude Comma-separated list of element types that should be ignored
during iteration.

Default value: button, hiddenField, condition, pageCondition,
pagebreak, captcha, passwordField

hideEmptyFields Specifies that all empty fields should be ignored.

Default value: false

excludeIfEmpty Enter the types of form fields here that should be ignored if
they are empty.

<table>
 <fc:summary exclude="hiddenField" var="item"
 elements="${self.properties['elements']}"
 hideEmptyFields="${self.properties['hide_empty_fields']}">
 <tr>
 <td><c:out value="${empty item.label ? item.name : item.label}"/></td>
 <td><c:out value="${fn:join(item.valueLabels, ', ')}"/></td>
 </tr>
 </fc:summary>
</table>

fc:captcha

Tag that you can use to generate a captcha image.

Attribute Description

url URL of the captcha servlet.

alt Alternative text for the captcha image

<mwf:captcha url="/servlet/captcha/captcha.jpg" path="${self.name}"
 title="Click for new Captcha"/>

fc:captchaLink

Tag that you can use to generate a reload link for the embedded captcha image. The
generated link is provided with an onClick event handler that replaces the captcha
image with a new image when clicked by the user.

Attribute Description

url URL of the captcha servlet.

<mwf:captchaLink url="/servlet/captcha/captcha.jpg" path="${self.name}">

Formcentric for FirstSpirit | Developer Manual 115

 <mwf:captcha url="/servlet/captcha/captcha.jpg" path="${self.name}"
 title="Click for new Captcha"/>
</mwf:captchaLink>

fc:ifCaptcha

Conditional tag whose body is not executed if the captcha specified in the name
attribute has been entered correctly.

Attribute Description

name Name of the captcha element.

var Name of the variable that is used to store a successful
captcha entry.

<mwf:ifCaptcha name="${self.name}">
 <mwf:captchaLink url="/jcaptcha/captcha.jpg" path="${self.name}">
 <mwf:captcha url="/jcaptcha/captcha.jpg" path="${self.name}"
 title="Click for new Captcha"/>
 </mwf:captchaLink>
</mwf:ifCaptcha>

fc:hasCaptcha

Conditional tag, whose body is not executed if the form contains a captcha element.

Attribute Description

var Name of the variable that is used to store the captcha element
present status.

<fc:hasCaptcha>
 <!-- markup that only renders
 if a captcha is present -->
</fc:hasCaptcha>

fc:getStandardButton

Tag that can be used to access the form’s standard buttons.

Attribute Description

var Name of the variable in which the button is stored.

buttonType Standard button type. Can be set to the following values:

_next Button that takes the user to the next page of the
form.

_back Button that takes the user to the previous page of
the form.

Formcentric for FirstSpirit | Developer Manual 116

Attribute Description

_cancel Button that cancels form data entry.

_finish Button that submits the form.

_exit Button that can be used to exit from the form.

<fc:getStandardButton buttonType="_finish" var="finishButton" />
<li data-mwf-container="${finishButton.id}" class="mwf-button mwf-next">
 <input type="button" value="${fn:escapeXml(submitLabel)}"
 data-mwf-id="${finishButton.id}" data-mwf-submit='{"type":"finish"}'/>

fc:forEachCondition

Tag that you can use to iterate over the individual rules of a condition. During the
iteration, the input element, the operator and the value used for comparison are made
available in the control variable.

Attribute Description

var Name of the control variable, which contains a bean of the
type ForEachConditionTag.Rule. This can be used to query
the following properties:

input Input element to which the condition refers.

operator Logical operator for the condition

value Value used by the condition for comparison

self Condition element

varStatus Iteration status

<mwf:forEachCondition self="${self}" var="cond">
 <c:out value="${cond.input.name}"/>
 <c:out value="${cond.operator}"/>
 <c:out value="${cond.value}"/>
</mwf:forEachCondition>

fc:valueOut

Tag that can be used to output the current value of a form field.

Attribute Description

name Form field name

var Name of the variable in which the value of the field should be
stored.

preferLabel Specifies that the value's label should be output instead of the
value itself.

Formcentric for FirstSpirit | Developer Manual 117

Attribute Description

escapeXml A Boolean flag that specifies whether the standard XML enti-
ties, such as “<” or “&”, should be converted to their entity
codes.

<mwf:valueOut name="${input.name}"/>

fc:conditions

Tag that generates the JSON definitions for the conditional elements.

Attribute Description

var Name of the variable in which the JSON data should be
stored.

<mwf:conditions var="conditions"/>

fc:calculatedValues

Tag that calculates the JSON definitions of the calculated values.

Attribute Description

var Name of the variable in which the JSON data should be
stored.

<mwf:calculatedValues var="calculatedValues"/>

fc:markdown

Tag that searches through the text passed in the body for markdown syntax and
converts this into HTML.

Attribute Description

inline Specifies whether the output HTML should be restricted to
inline elements (optional).

Default value: false

<mwf:markdown inline="false">**Dieser Text wird
 fettgedruckt ausgegeben.**</mwf:markdown>

fc:hasGlobalBindErrors

This tag can be used to check whether global errors were identified while validating
the command bean specified in the name attribute. The HTML code contained within
the tag is output only if the validation resulted in global errors. The errors identified
are provided in the request scope for further processing in the variable errors, which
has the variable type org.springframework.validation.Errors.

Formcentric for FirstSpirit | Developer Manual 118

Attribute Description

name Name of the command bean

<mwf:hasGlobalBindErrors name="command${self.uid}">

 <li class="mwf-error">
 <form:errors cssClass="mwf-error" element="p" />

</mwf:hasGlobalBindErrors>

fc:vars

Tag that searches through the text passed in the body for variables in the format
${name-der-variable} and replaces them with their corresponding values.

Attribute Description

map Map with the variable values (key, value).

Please note: A map with the form variables (formVariables)
and a map with the form values (formdata) are passed by
default in the page scope.

var Name of the page scope variable in which the filtered body
text should be stored.

<fc:vars map="${formdata}">
 <fc:markdown><c:out value="${action.properties['note']}"/></fc:markdown>
</fc:vars>

You can specify dynamic tag attributes to extend the list of variables.

<fc:vars map="${formdata}" my-variable="${any-page-scope-variable}">
 <p>${my-variable}</p>
</fc:vars>

fc:url

Tag that can be used to generate absolute URLs on Formcentric controllers.

If nothing is specified in the baseUrl attribute, then the URL generated points to the
Formcentric web app in which the JSP template was called.

This tag is helpful if you want to install the Formcentric web application on a host
separate to the one hosting the surrounding web page, since in this case you are
unable to use relative URLs.

Attribute Description

value Specifies the Formcentric controller.

Formcentric for FirstSpirit | Developer Manual 119

Attribute Description

var Name of the variable in which the generated URL should be
stored.

scope Scope in which the generated URL is stored. If you do not
enter anything here, the page scope is used.

context Name of a local web application.

<fc:url value="/servlet/rest" var="restUrl">
 <fc:param name="_service" value="${self.properties['datasource']}"/>
 <fc:param name="_uid" value="${form.uid}"/>
 <fc:param name="_input" value="${self.name}"/>
 <fcs:xsrfTokenParam />
</fc:url>

Taglib web-security-1.0

Another tag library is available for generating and issuing XSRF tokens. To utilise this
taglib, insert the following instruction into the JSP template:

<%@ taglib prefix="fcs"
 uri="http://www.formcentric.com/web-security-1.0"%>

The following section gives you a description of the tags contained in this library.

fcs:xsrfToken

Tag that creates a hidden field with an XSRF token.

Attribute Description

formId ID of the form for which the XSRF token should be generated.
If nothing is entered here, then the ID of the form passed in
the from request attribute is used.

varName Name of the variable in which the XSRF token should be
stored. If this attribute contains a value, then no hidden field is
created.

<fcs:xsrfToken/>

fcs:xsrfTokenParam

This tag can be used together with the <c:url> tag in order to add an XSRF token to
the URL as a parameter.

Attribute Description

formId ID of the form for which the XSRF token should be generated.
If nothing is entered here, then the ID of the form passed in
the from request attribute is used.

Formcentric for FirstSpirit | Developer Manual 120

Attribute Description

method Specifies the HTTP method (GET, POST) used to access the
corresponding URL.

Default value: GET

<c:url value="/servlet/upload" var="uploadUrl">
 <c:param name="_uid" value="${form.uid}"/>
 <c:param name="_lang" value="${form.lang}"/>
 <fcs:xsrfTokenParam method="POST"/>
</c:url>

6.5.11. JavaScript

Out of the box, Formcentric ships with the JavaScript files as described
below. These are stored in the development workspace, in the directory /
formcentric-webapp-customizations/src/main/webapp/js and the export file /formcen-
tric-module-customizations/resources_export.zip.

jQuery-File-Upload

For file uploading, Formcentric uses the Blueimp jQuery-File-Upload plugin.
Depending on the browser used, files are either transferred using AJAX or within a
hidden iframe. The plugin comprises the following JavaScript files.

• jquery_ui_widget_1_13_2.js

• jquery_iframe_transport.js

• jquery_xdr_transport.js

• load-image-all-min.js

• canvas-to-blob.min.js

• jquery_fileupload_10_31_0.js

• jquery_fileupload_process_10_31_0.js

• jquery_fileupload_image_10_31_0.js

Since some of the JavaScripts have dependencies on one another, they must be
loaded in the order specified here.

jquery-autocomplete.js

This JavaScript contains a jQuery plugin that can be used to add autocomplete
functionality to input fields. Values for the autocomplete function are loaded asynchro-
nously from the specified REST service.

Formcentric for FirstSpirit | Developer Manual 121

jquery-format-1.3.js

This JavaScript contains a jQuery plugin that enables the formatting or analysis of
dates and numbers. Note that this is a JavaScript alternative to the Java classes
SimpleDateFormat and NumberFormat.

json2.js

Formcentric uses the native JSON object supplied by modern browsers to parse and
construct JSON objects. For older browsers that do not support the JSON object, the
object is provided by this JavaScript.

Select2

Formcentric uses the Select2 jQuery plugin to offer a configurable selection field
that supports functions such as search, selection, user-defined options and many
other features. Once the plugin has been loaded by the browser, all drop-down lists
are automatically shown as Select2 selection fields. Select2 offers a wide range
of plugin-specific configuration parameters, which you can specify in the JSP or
FreeMarker template as a JSON object in the data attribute data-mwf-select within
the <form:select> tag. For further information about the Select2 plugin, see https://
select2.org.

<form:select id="${self.id}"

 <!-- Select2 config -->
 data-mwf-select='{
 "placeholder": "${placeholder}",
 "width": "100%",
 "tags": "${customInput}"
 }'

 ...

jquery-formcentric-1.9.js

This JavaScript contains a jQuery plugin that provides the JavaScript functions
required by Formcentric. As shown below, an instance of the plugin can be generated
in the JSP template webforms.jsp.

<mwf:calculatedValues var="calculatedValues"/>
<mwf:conditions var="conditions"/>

<script type="text/javascript">
 jQuery('#command${self.uid}').webforms({
 trackingUrl: "${trackingUrl}",
 calculatedValues: ${calculatedValues},
 conditions: ${conditions}
 });
</script>

https://select2.org
https://select2.org

Formcentric for FirstSpirit | Developer Manual 122

When calling the plugin method webforms, you have the option of passing a configu-
ration object that may contain the following options.

Option Description

conditions Type: JSON

JSON definition of the client-side conditions to be evalu-
ated.

calculatedValues Type: JSON

JSON definition of the client-side calculated values to be
calculated.

appendUrlVars Type: Boolean

You use this parameter to specify that the URL para-
meters in the host page will be appended to the AJAX
request sent to the form controller.

trimSpaces Type: Boolean

You use this parameter to specify that leading and trailing
spaces will be trimmed from the form data.

createOption Type: Function($form, entry, selected)

Function that creates an option element in a dynamic
drop-down list (comboBox).

createRadio Type: Function($form, name, entry, checked)

Function that creates a radio button in a dynamic Radio
Button Select field (radioGroup).

createCheckBox Type: Function($form, name, entry, checked)

Function that creates a check box button in a dynamic
Check Box Select field (checkBoxGroup).

createUploadFileRow Type: Function(Object $form, Object attr, file)

This function creates a new entry in the file list of the File-
Upload element before the file is uploaded.

createDownload-
FileRow

Type: Function(Object $form, Object attr, file)

This function creates a new entry in the file list of the File-
Upload element after the file has been uploaded.

updateCalculatedValue Type: Function($form, id, value)

Function that updates the display of a calculatedValue
when this has been re-calculated.

updateFormValue Type: Function($form, $elem, name, l)

Formcentric for FirstSpirit | Developer Manual 123

Option Description
This function updates the value of a form field in the
summary, if this value has been entered or changed by
the user. If the corresponding form field is a selection (list)
field, the labels of the options selected are passed in the l
parameter. Otherwise, the text value entered is passed.

onFillDropdown Type: Function(Object $form, Object $elem))

Callback function that is called after a dynamic dropdown
list has been filled.

onFillSelection Type: Function(Object $form, Object $elem))

Callback function that is called after a dynamic drop-down
list has been filled.

onInit Type: Function(Object $form)

Callback function that is called after the jQuery plugin has
been initialised. Use this function to perform your own
initialisations.

onSubmit Type: Function(Object $form, String url, String query)

Callback function that is called when the form is
submitted. The form is submitted only if the function
returns the Boolean value true.

onSuccess Type: Function(Object $form, Object data, String status,
Object jqXHR)

Callback function that is called after the form has been
submitted successfully.

onAjaxError Type: Function(Object jqXHR, String status, String error)

Function that is called when an error occurs during an
AJAX request. As standard, this function creates an entry
in the browser's error log.

onRedirect Type: Function(Object $form, Object data, String status,
Object jqXHR)

The onRedirect function is a callback function that is
executed if the server response contains the header X-
Redirect-Location-Header when the form is submitted.

If the onRedirect function returns the Boolean value
true, this indicates that the redirect has already been
processed within the onRedirect callback function. If, on
the other hand, the function returns false or no response
is returned, then the redirect is executed automatically to

Formcentric for FirstSpirit | Developer Manual 124

Option Description
the URL (X-Redirect-Location-Header) specified in the
server response.

operations.visible Type: Function(Object $form, Object field)

Function with which input fields can be made visible.

operations.hidden Type: Function(Object $form, Object field)

Function with which input fields can be hidden.

operations.writeable Type: Function(Object $form, Object field)

Function with which input fields can be changed from
write-protected to editable.

operations.readonly Type: Function(Object $form, Object field)

Function with which input fields can be changed from
editable to write-protected.

operations.enabled Type: Function(Object $form, Object field)

Function with which input fields can be changed from
deactivated to activated.

operations.disabled Type: Function(Object $form, Object field)

Function with which input fields can be changed from acti-
vated to deactivated.

operations.optional Type: Function(Object $form, Object field)

Function with which input fields can be marked as
optional.

operations.mandatory Type: Function(Object $form, Object field)

Function that is used to mark input fields as required
fields.

The default implementations of the JavaScript functions listed can be found in the
JavaScript jquery-formcentric-1.9.js.

In the following example, the operations.mandatory function is replaced by a modified
version.

<fc:calculatedValues var="calculatedValues"/>
<fc:conditions var="conditions"/>

<script type="text/javascript">
 $('#command${form.uid}').webforms({
 "calculatedValues" : ${calculatedValues},
 "conditions" : ${conditions},
 "operations": {
 "mandatory": function ($form, field) {
 var $label = $form.find('label[for="' + field.input + '"]');

Formcentric for FirstSpirit | Developer Manual 125

 $label.children('em').remove();
 $label.append('*', '');
 }
 }
 });
</script>

Event reference

The Formcentric jQuery plugin makes a series of events available that enable you to
respond to scenarios that match the various events. The corresponding event handler
must be registered on the document object.

Detailed kinds of event-dependent information such as the associated form element,
for example, are passed to the event handler in the event.details event object.

document.addEventListener("mwf-fill-selection",
 function(event) {
 console.log(event.detail.$form);
 console.log(event.detail.$elem);
 }
);

The following table describes the events that you can monitor and program specific
responses to:

Event name Detailed information Is sent when

mwf-ajax-finished $dest, $content the function mwfAjaxReplace has
been executed successfully.

mwf-ajax-error $dest, jqXHR, textS-
tatus, errorThrown

the asynchronous call (AJAX call)
has an error.

mwf-fill-dropdown $form, $elem a drop-down list has been filled
by a data source.

mwf-fill-selection $form, $elem a radio button or check box
select field has been filled by a
data source.

mwf-fill-hidden $form, $elem a hidden field has been filled by a
data source.

mwf-sugges-
tion-selected

$form, $elem, id, selec-
tion, params

an autocomplete item has been
selected for an input field.

mwf-value-changed $form, $elem, name,
value

the value of a form field has
changed.

6.6. Extending the headless web application
The Formcentric headless web application is a Spring Boot application that provides
a REST interface with various end points for form processing. For client-side connec-

Formcentric for FirstSpirit | Developer Manual 126

tivity to the headless application, a ready-to-use React client is provided, which you
can also configure to suit your requirements (see also Section 6.7, “Formcentric
client”).

The following section describes how to extend the functionality of the headless
application. Please note: some of the names of the framework classes are the
same as those from the Spring MVC web application but are located outside of the
com.formcentric.headless.rest package.

6.6.1. Implementing an action

Similarly to the Spring MVC web application, the headless application also uses
actions that encapsulate the business logic for the formdata processing. These
classes implement the interface com.formcentric.headless.actions.Action. You can
then integrate any backend systems you need to by developing a custom action.
These actions are Spring beans: as a result, configuration parameters can be passed
to the action by using the standard Spring mechanisms. The following example shows
you how to implement and configure a CustomAction.

import com.formcentric.headless.actions.*;

public class CustomAction extends BaseAction {

 public static final String PROP_CUSTOM = "anyCustomActionPropertyName";

 @Override
 public ActionResult execute(ExecutionContext context, Map<String,
 Object> formData) throws ActionException {

 WebForm formDefinition = context.getFormDefinition();
 ActionNode action = context.getAction();

 String customParam = action.getPropertyAsString(PROP_CUSTOM);

 // Business-Logic
 ...

 ActionResult actionResult = new ActionResult();
 actionResult.setView("success");
 return actionResult;
 }

 @Override
 public boolean isExecutable(ExecutionContext context,
 Map<String, Object> formValues) throws ActionException;
 return true;
 }

 public String name() {
 return "customAction";
 }
}

Formcentric for FirstSpirit | Developer Manual 127

To instantiate and configure your own actions in the headless application, create a
configuration class as shown in the following code example. Label the configuration
class with the annotation @Configuration. In your configuration class, you define a
method that instantiates an object of your action class. This method must be anno-
tated with @Bean in order to document the fact that this method provides a bean
definition.

If your action class has dependencies on other beans, use the method parameters to
inject these beans. Use the annotation @Value to inject configuration values or pass
other beans directly as parameters.

package com.example.myapp.config;

import com.example.myapp.actions.MyCustomAction;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class MyActionsConfiguration {

 @Bean
 public MyCustomAction myCustomAction() {
 // Configuration and initialization of the MyCustomAction
 return new MyCustomAction();
 }

 // Additional bean definitions can be added here
}

If you place your configuration class in the base package com.formcentric.headless
or a sub-package, Spring Boot will find and load your class automatically. If you use
different package names, you must extend the scanBasePackage parameter for the
@SpringBootApplication annotation in the main application class.

In the development workspace, the application class CustomHeadlessWebApplica-
tion is already created, which you can modify for this purpose.

6.6.2. Adding variables for pre-filling form fields

Alongside the predefined variables, you also have the option of adding your own
variables for pre-filling form fields. To do this, register a Spring bean of the Vari-
ablesService type in the application context of the headless application.

import com.formcentric.headless.services.VariablesService;
import com.formcentric.headless.model.WebForm;
import org.springframework.stereotype.Service;
import jakarta.servlet.http.HttpServletRequest;

@Service
public class CustomVariablesService implements VariablesService {
 @Override
 public final Map<String, Object> getVariables(HttpServletRequest request,

Formcentric for FirstSpirit | Developer Manual 128

 WebForm formDefinition) {

 Map<String, Object> vars = new HashMap<>();

 // Add custom variables to the variables Map
 vars.put("custom_var", "custom_value");
 return vars;
 }
}

This VariablesService bean is a Spring bean, which means you can also access
external systems or services when creating the variables.

In some application scenarios, you will need to pre-fill form fields with values from the
web page or client application into which the form is embedded. For this use case, it
is sufficient to specify the variables in the data attribute data-fc-vars from the div tag
with which the form is associated.

<div
 data-fc-id="1249010"
 ...
 data-fc-vars='{"custom_var":"custom_value"}'
></div>

6.6.3. Implementing a REST service

All of the REST services described in section Section 6.5.9, “Implementing a REST
service” are also available to you when deploying the headless application. The
following example shows you a REST service that generates a map with static key/
value pairs.

package com.formcentric.headless.examples.rest;

import com.formcentric.headless.rest.BaseRestService;
import com.formcentric.headless.rest.ServiceContext;
import org.jetbrains.annotations.NotNull;
import org.springframework.stereotype.Component;

import java.util.HashMap;
import java.util.Map;

@Component
public class CustomRestService extends BaseRestService {

 @Override
 public Object invoke(ServiceContext context, Map<String, Object> formData) {

 HashMap<String, String> data = new HashMap<>();

 // fill the map
 data.put("key1", "value1");
 data.put("key2", "value2");
 data.put("key3", "value3");

Formcentric for FirstSpirit | Developer Manual 129

 return data;
 }

 @NotNull
 @Override
 public String name() {
 return "customRestService";
 }
}

By calling the invoke method, the RestService is passed both the ServiceContext as
well as the current user input (formData parameter). This lets you respond directly
to user input.

The ServiceContext also gives you access to the form definition, the input element,
the configuration parameters for the RestService and the request object.

All form elements, which also includes the REST services, must have their own unique
name with which they can be referenced within the form definition. The name is deter-
mined when starting the application by calling the method name().

Spring uses the @Component annotation to instantiate your REST service automat-
ically and register it using the specified name.

6.6.4. Property Files

Environment-specific configuration of the Headless application is defined in the appli-
cation-headless.properties file. This configuration overrides the default settings from
the application.properties file, which is included in the Headless server's JAR archive
and cannot be modified directly.

During configuration with the ServerManager, the system generates the applica-
tion-headless.properties file automatically.

application.properties

The application.properties file contains the default configuration of the application. To
override individual parameters, copy them to the application-headless.properties file.

Action Configuration:

Parameter Description

actions.redirect.supportDynamicUrlsEnables dynamic URLs in redirects

actions.webhook.allowlist Allowed URLs/IPs for webhooks (e.g., https://local-
host/*). Warning: Accessing private addresses can
enable SSRF.

File Upload Configuration:

Formcentric for FirstSpirit | Developer Manual 130

Parameter Description

spring.servlet.multipart.
max-file-size

Maximum file size for uploads

spring.servlet.multipart.
max-request-size

Maximum total size for multipart uploads

upload.storage.type Storage type: filesystem or minio

upload.location Path for file uploads (filesystem)

upload.thumbnail.width Width of generated thumbnails

upload.thumbnail.height Height of generated thumbnails

upload.thumbnail.crop Crop thumbnails (true/false)

upload.thumbnail.outputQuality Quality of generated thumbnails

minio.url MinIO host

minio.bucket MinIO bucket

minio.access-key MinIO access key

minio.secret-key MinIO secret key

Cache Configuration:

Parameter Description

spring.cache.type Caching strategy used, e.g., hazelcast

cache.time-to-live-seconds Lifetime of cache entries in seconds

Mail Server Settings:

Parameter Description

mail.charset Character set used for emails

mail.transport.protocol Transport protocol (e.g., smtp)

mail.smtp.host SMTP server

mail.smtp.port SMTP port

mail.smtp.auth SMTP authentication (true/false)

mail.user Username for mail server

mail.password Password for mail server

mail.smtp.socketFactory.class SocketFactory class for SSL

mail.smtp.starttls.enable Enable TLS (true/false)

mail.debug Log full email content (true/false)

CAPTCHA Configuration:

Formcentric for FirstSpirit | Developer Manual 131

Parameter Description

captcha.provider CAPTCHA provider: jCaptcha, friendlyCaptcha, re-
Captcha

captcha.secret API secret (provider-specific, optional)

captcha.siteKey Key for embedding CAPTCHA

captcha.endpoint Endpoint for Friendly Captcha (e.g., global, eu)

Analytics Configuration:

Parameter Description

analytics.enabled Enable analytics functionality (true/false)

analytics.backendUrl URL of the analytics backend

analytics.clientToken Client token for analytics usage

CORS Configuration:

Parameter Description

cors.pathPattern Path pattern for CORS

cors.allowedOrigins Allowed origins

cors.allowedOriginPatterns Allowed origin patterns

cors.allowCredentials Allow credentials (true/false)

cors.allowedMethods Allowed HTTP methods

cors.allowedHeaders Allowed HTTP headers

Proxy Configuration:

Parameter Description

proxy.type Proxy type (none, manual, automatic)

proxy.host Proxy host

proxy.port Proxy port

proxy.authScheme Authentication method (e.g., Basic)

proxy.urlScheme Scheme (http or https)

proxy.password Proxy password

proxy.user Proxy username

proxy.configUrl PAC file (only for automatic)

proxy.exclusions Exceptions (hosts/domains)

HttpClient Configuration:

Formcentric for FirstSpirit | Developer Manual 132

Parameter Description

httpclient.connectTimeout Connection timeout in milliseconds

httpclient.allowCircularRedirects Allow circular redirects

httpclient.maxConnectionsTotal Maximum total connections

httpclient.maxConnections Maximum connections per host

httpclient.maxRedirects Maximum number of redirects

httpclient.userAgent User-Agent header

Double-Opt-In Whitelist:

Parameter Description

optin.urlPatterns Whitelist of allowed target addresses for double
opt-in

Metrics Configuration:

Parameter Description

metrics.security.enabled Protect metric endpoints

metrics.usage.activated Enable usage metrics

metrics.actions.activated Enable action metrics

metrics.user Username for metrics access

metrics.password Bcrypt-hashed password for metrics access

management.endpoints.
web.exposure.include

Exposed web endpoints

management.endpoints.
jmx.exposure.exclude

Excluded JMX endpoints

management.endpoint.
env.access

Environment variable access control

management.endpoints.
access.default

Default endpoint access permissions

application-headless.properties

This file is used to define custom configuration values. All parameters listed here
override the corresponding defaults from application.properties. Only changed values
need to be specified.

Server Connection:

Parameter Description

connection.transport.protocol Protocol to use (1=HTTP, 2=Socket)

connection.host Hostname or IP address of the FirstSpirit server

Formcentric for FirstSpirit | Developer Manual 133

Parameter Description

connection.port Port number of the FirstSpirit server

connection.user Username for server authentication

connection.password Encrypted password for the connection

connection.maxsessions Maximum number of concurrent sessions

connection.https Use HTTPS (true/false)

6.7. Formcentric client
The NPM module @formcentric/client (https://www.npmjs.com/package/@formcen-
tric/client) is required to present Formcentric forms in the browser. This applies both
for projects based on HTML only plus JavaScript as well as for projects that utilise
frontend frameworks or frontend libraries.

The installed package includes various variants of modules for a wide range of appli-
cations. The files required are installed using NPM, which itself has no dependencies,
however, and can also be used without any bundlers.

For installation, execute the following command:

npm install @formcentric/client

Or alternatively:

pnpm install @formcentric/client

The following items must be present in order for a form to be displayed correctly:

1. A div tag with an fc-id data attribute, into which the form will be rendered.

2. A loaded theme, consisting of CSS, templates and CSS custom properties, if these
are being used in the CSS file.

3. To be able to be embedded as a script tag, formapp.js must also be accessible.

4. To be able to be embedded as a link tag, formcentric_component_style.css must
also be accessible, if internal components like Datepicker or FileUploader are being
used.

<head>
 {...}
 <link rel="stylesheet" href="/example-url/formcentric_component_style.css"/>
</head>
<div
 data-fc-id="1249010"
 data-fc-formapp-url="/example-url/formapp.js"
 data-fc-theme-url="/example-url/formcentric.css"
 data-fc-template-url="/example-url/formcentric_templates.js"

Formcentric for FirstSpirit | Developer Manual 134

 data-fc-theme-variable-url="/example-url/formcentric.json"
 data-fc-form-definition="K82AClxH1YpNGtKt ... ffUuAm4OyEQsC9"
 data-fc-refs="ffUuAm4OyEQsC9 ... 2AClxH1YpNGtKt"
 data-fc-vars='{}'
 data-fc-params='{"}'
 data-fc-data-url='https://example-url-to-formcentric-headless-server.com'
></div>

<script
 src="./formcentric.js"
 defer
></script>

6.7.1. Theme

The theme CSS must be loaded to ensure that the form can be displayed correctly.
This can be achieved by using a link tag in the HTML head and the use of custom
properties. If available, these must be set in the HTML code.

Each input field has its own template, which can be modified. These templates
are defined on the Window object in a JS file called formcentric_templates.js. This
ensures that they can be found later when rendering the form. The templates are
required in order to present the form correctly (see Section 6.7.3, “Templates”).

6.7.2. Initialisation

To start the client, either the script formcentric.js can be loaded or, after this has been
loaded, window.formcentric.initFormcentric() can be called at a later point in time. You
use the data attribute fc-data-url to configure the URL for accessing the Formcentric
headless server.

6.7.3. Templates

Templates always consist of a function whose return value is used by the Formcen-
tric Client to render HTML code. To achieve this, the Formcentric client passes two
parameters (html and props) to a template function. The exact structure and the para-
meters used will depend on the specific usage of the template.

html: A template literal tag, which is used to render HTML code. This parameter
enables the embedding of HTML into the template’s JavaScript code.

props: An object that contains the properties of the form field. These consist of calcu-
lated values from the Formcentric Client as well as field data supplied by the Editor.
The specific properties vary according to the form field.

The final HTML is created from a combination of static HTML code and the values
from the props properties. This can be achieved by combining strings together or
using functions to render HTML. The resulting HTML created is then passed back
as a template function return value to the Formcentric client, which then renders it
in the DOM.

Formcentric for FirstSpirit | Developer Manual 135

All template functions can also be processed asynchronously by the Form-
centric client as a promise.

Template properties

The Formcentric client passes template properties to the corresponding template
function as parameters (props). These include all of the information required for the
presentation and behaviour of the respective form fields.

The following properties as passed to the templates:

Property Description

key The element’s unique ID.

oninput (event: InputEvent) => void

Updates the field value.

onfocus (event: FocusEvent) => void

If present, returns any validation errors for the field.

onclick A function that evaluates the onClick functions defined by
the editor.

fieldSuccess A Boolean value that specifies whether the element was
successfully validated and has no errors.

fieldError An object that contains information about an error in the
element.

properties An object that contains the properties of the field element.

components An object that contains components for certain field types.
These components are used to render the element in the
template. The object contains components for captcha,
fileUploader, comboBox, suggestions, hint, datePicker
and markdown.

fieldSetFields An array that contains the fields from a fieldset.

layoutFields An array that contains the fields from a Layout.

summaryFields An array that contains the information from fields as speci-
fied in a SummaryField.

fieldEmptyText A piece of boilerplate displayed if the SummaryField
contains no values.

contentMarkup A content component that is returned by a function speci-
fied by the form div.

hasService A Boolean value that specifies whether the element has a
REST service.

setRESTParams (params: Record<string,any>) => void:

Formcentric for FirstSpirit | Developer Manual 136

Property Description
A function that is used to specify the parameters for the
element’s REST service.

Element: The properties also contain all of the information about the element to be
shown.

interface fcElement {

id: string // ID des Elements

name: string // Technischer Name des Elements

type: fcFieldTypes // Elementtyp

fieldSetId?: string // ID des FieldSets, in dem das Element enthalten ist

layoutId?: string // ID des Layout Elements, in dem das Element enthalten ist

label?: string // Label des Elements

value?: string | string[] // Wert des Elements

validators?: fcElementValidator[] // Validatoren

children?: {

 id: string

 type: fcFieldTypes

 name: string

 label?: string

 value?: string | string[]

 checked?: boolean

 properties?: fcProperties

 validators?: fcElementValidator[]

}[]

properties?: fcProperties // Properties des Elements (siehe Properties)

}

Field types:

type fcFieldTypes =

| 'error'

Formcentric for FirstSpirit | Developer Manual 137

| 'success'

| 'formHeader'

| 'formFooter'

| 'inputField'

| 'button'

| 'form'

| 'layout'

| 'condition'

| 'passwordField'

| 'textArea'

| 'radioGroup'

| 'comboBox'

| 'checkBoxGroup'

| 'fileUpload'

| 'calculatedValue'

| 'hiddenField'

| 'paragraph'

| 'summary'

| 'dateField'

| 'numberField'

| 'emailField'

| 'phoneField'

| 'shortText'

| 'captcha'

| 'content'

| 'option'

| 'fieldSet'

Validators:

Formcentric for FirstSpirit | Developer Manual 138

interface fcElementValidator {

 id: string

 name: string

 properties?: {

 errormessage?: string

 from?: string

 to?: string

 days_from?: string

 days_to?: string

 pattern?: string

 max_files?: string

 max_size?: string

 file_types?: string
}

Properties: All HTML attributes and field properties from the form definition are
contained in props.properties. These are calculated as a result of conditions by the
Formcentric client, for example, or configured by the form author for the corresponding
form field. The following table gives an overview of possible properties:

Property Description

hint An optional note text that gives the user more information
or provides instructions.

placeholder An optional placeholder text that is displayed in an input
field if no value has been entered.

selected A Boolean value that specifies whether the element is se-
lected by default.

errormessage An optional error message that is displayed if the element
is invalid.

multiple A Boolean value that specifies whether multiple values
can be selected for this element.

auto_upload A Boolean value that specifies whether an automatic up-
load function is activated.

datasource A character string that specifies a data source.

datasource_params A character string that specifies the parameters for the da-
ta source.

Formcentric for FirstSpirit | Developer Manual 139

Property Description

dynamic A Boolean value that specifies whether the element is dy-
namic and has properties that can be changed at runtime.

visible A Boolean value that specifies whether the element
should be visible.

hidden A Boolean value that specifies whether the element
should be hidden.

writable A Boolean value that specifies whether the element
should be writable.

readonly A Boolean value that specifies whether the element
should be read-only.

optional A Boolean value that specifies whether the element is op-
tional.

mandatory A Boolean value that specifies whether the element is re-
quired.

disabled A Boolean value that specifies whether the element
should be deactivated.

enabled A Boolean value that specifies whether the element
should be activated.

type A character string that specifies the element type.

Components

Internal components are provided for selection by props.components. This is intended
to simplify work with individual form fields if there is no need to modify the functionality
provided by these fields. The following components are available:

Property Description

captcha Loads captcha images from the Headless Server

combobox Displays drop-down lists

datePicker Displays a date picker

fileUploader Displays an upload dialog

hint Displays note text

markdown Displays markdown as HTML elements

suggestions Displays autocomplete items from REST services as a
drop-down list under input fields

The following properties can be passed to the components named above:

captcha:

Formcentric for FirstSpirit | Developer Manual 140

Property Description

buttonText An optional character string for the refresh button on the
captcha component. If this is not specified, the button
shows an icon instead.

combobox:

Property Description

all All properties from the template’s parameter must be
passed.

datepicker:

Property Description

all All properties from the template’s parameter must be
passed.

fileUploader:

Property Description

trigger The class or ID of the trigger element

inline An optional Boolean value that specifies whether the
element should be displayed inline.

hint:

Property Description

all All properties from the template’s parameter must be
passed.

markdown:

Property Description

markdown The markdown property accepts stringified markdown as
a value.

suggestions:

Property Description

All All properties from the template’s parameter must be
passed.

The components are executed within the HTML template literal tag in the templates:

 ${ props.components.captcha({…}) }

Formcentric for FirstSpirit | Developer Manual 141

Modifying and extending templates

To extend the templates, you can modify the HTML elements and classes inside the
templates. This gives you the option of modifying the appearance and behaviour of
the components.

You can add or remove classes to modify the styling, or add additional HTML elements
in order to provide additional functionality.

The templates can also be executed asynchronously: this means that you can access
and display data that is not passed directly to the templates by the Formcentric client.
This gives you the option of integrating with APIs or other external data sources.

To use asynchronous data in the templates, you can use JavaScript functions like
fetch to request data from a server. You can then display the data received in the
templates by utilising the corresponding variables or placeholders.

Extension options:

1. Support for one or more user-defined CSS classes. Optional CSS classes can be
added, so as to modify the styling of the input element. For this, a custom class
can be used in the className definition:

input className="customClass" />

2. Modifying the markup: New markup elements can easily be added and existing
elements modified:

inputField: (html, props) => html`<div className="fc-field
 ${props?.properties?.hidden ? 'fc-hiddenField' : ''}
 ${props.properties?.hint ? 'fc-field--has-hint' : ''}
 ${props?.fieldError ? 'fc-field--has-error' : ''}
 ${props?.fieldSuccess ? 'fc-field--is-valid' : ''}">

 ${customFunction(html, props)}

 <div className="fc-textinput">
 <div className="fc-textinput__input">
 <input
 id=${props.id}
 name=${props.name}
 value=${props.value}
 oninput=${props.oninput}
 onfocus=${props.onfocus}
 onblur=${props.onblur}
 type=${props.properties.type || 'text'}
 autocomplete=${props.properties?.autocomplete}
 maxlength=${props.properties?.maxlength}
 disabled=${props.properties?.disabled}
 placeholder=${props.properties?.placeholder || ''}
 readonly=${props.properties?.readonly}

 ${...customProperties}
 />

Formcentric for FirstSpirit | Developer Manual 142

 ${props.components.suggestions(props)}
 </div>

 ${label(html, props)} ${hint(html, props)} ${error(html, props)}
 </div>
</div>

6.7.4. Special integration scenarios

For most use cases, the @formcentric/client script is simply loaded and then
executed. However, there are some special scenarios, such as single-page applica-
tions (SPA), in which the script must not be executed until the DOM tree has been
fully constructed. In such cases, it is useful to be able to import the script dynamically
and execute it at the exact moment when the virtual DOM has been fully constructed.
This point in time will depend on the SPA framework.

function App() {
 const ref = useRef(null);

 const formDef = "TGU5Kmxe4svPaahc2aSm-4PHzoKWWtvC ... D-ZwC6MPQRWA==";

 useEffect(() => {
 if (!ref) return;

 import("@formcentric/client/dist/formcentric");
 }, [ref]);

 return (
 <div
 ref={ref}
 data-fc-id="<<id>>"
 data-fc-form-definition={formDef}
 ></div>
);
}

If no dynamic import is possible, the function initFormcentric from the
window.formcentric object can be called after loading the script.

window.formcentric.initFormcentric()

6.7.5. Troubleshooting

Always check the browser log. If no client output can be found there, then the
formcentric.js script was not loaded and/or executed.

There are two reasons for a message stating that the form div could not be found:

1. No div tag with the data attribute fc-id was found

2. The script formcentric.js was loaded without specifying the defer attribute

Formcentric for FirstSpirit | Developer Manual 143

Several issues may cause a situation where no form is displayed although a form div
was found:

1. No div tag with the data attribute fc-id was found

2. The script formapp.js was not loaded

Internal components like Datepicker or FileUploader are rendered without styling:

1. @formcentric/client/dist/formcentric_component_style.css was not found in the
page

Debugging

The Formcentric client provides various debugging options that allow you to trou-
bleshoot issues during development or in live operation. You have two ways to
selectively enable debugging:

Local debugging via attribute

Enable debug output for a specific form by setting the attribute data-fc-debug="true"
directly on the form container (see Section 5.1, “Paragraph style sheet”). Only the form
assigned with this attribute will output debug information to the browser console. All
other forms on the page remain unaffected. Typical debug output includes information
about loading and initialization status, errors when retrieving form data, and server
responses.

Example:

<div
 data-fc-id="..."
 data-fc-debug="true"
 ...weitere Attribute...
></div>

Global activation

Alternatively, you can globally enable debugging for all forms on a page or within an
application (see Section 5.6, “Page template”). In this case, debugging is activated
for all embedded Formcentric forms on the page, without the need to modify each
form’s attributes individually. This method is particularly useful for automated debug-
ging during development.

To enable this, add the following statement in the browser console or in your own
JavaScript code:

window.formcentric ??= {};
window.formcentric.debug = true;

	Developer Manual
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Overview
	3. System requirements
	3.1. Java
	3.2. FirstSpirit

	4. Installation and configuration
	4.1. Installing the Formcentric module
	4.2. Licence file
	4.3. Installing the Formcentric web editor
	4.4. Formcentric web applications
	4.4.1. Installation
	4.4.2. Configuration
	Mail server tab
	PDF export tab
	FS server tab
	Formcentric Analytics tab
	Proxy tab
	Captcha tab
	CORS tab
	Metrics tab (Spring-MVC)
	Monitoring tab (headless)
	Double opt-in tab
	File upload tab (headless)

	4.5. Analytics Backend web application
	4.5.1. Installation
	4.5.2. Configuration
	General tab
	Mail server tab
	Analytics Reporting tab
	Security tab
	Database connection tab
	LDAP tab
	Search tab

	4.6. Analytics Reporting web application
	4.6.1. Installation
	4.6.2. Configuration

	4.7. Solr web application
	4.8. Formcentric project components
	4.8.1. Project resources
	4.8.2. Project configuration

	4.9. Configuring the publication tasks
	4.10. Password encryption

	5. Extending the FirstSpirit project
	5.1. Paragraph style sheet
	5.1.1. Properties tab
	5.1.2. Form tab
	FORMCENTRIC_FORMEDITOR
	FORM_VARIABLES
	FORM_VARIABLE
	FORM_LAYOUTS
	FORM_LAYOUT
	FIELD_WIDTHS
	FIELD_WIDTH
	INPUT_STYLE_CLASSES
	INPUT_STYLE_CLASS
	DATASOURCES
	DATASOURCE
	FILE_TYPES
	FILE_TYPE
	PHONE_NUMBER_TYPES
	PHONE_NUMBER_TYPE
	REGEX_PATTERNS
	REGEX_PATTERN
	MAIL_ACTION
	MAIL_FORMATS
	MAIL_FORMAT
	PDF_ACTION
	REDIRECT_ACTION
	ALLOWED_HOSTS
	ALLOWED_HOST
	LANGINFOS
	LANGINFO

	5.1.3. Internet (HTML) tab

	5.2. formcentric_headless_url script
	5.3. formcentric_encrypted_form script
	5.4. formcentric_encrypted_refs script
	5.5. formcentric_login_ticket script
	5.6. Page template
	5.7. Themes
	5.8. CSS

	6. Programming and customisation
	6.1. Development workspace
	6.2. Monday Maven plugin
	6.3. Extending the input component in Site Manager
	6.3.1. Developing a NodeEditorPane
	6.3.2. Extending the EditorSetup class
	6.3.3. Extending the Form Editor GUI object model

	6.4. Extending the ContentCreator web application
	6.4.1. Adding a new form element
	6.4.2. Adding a new validator
	6.4.3. Adding a new action
	6.4.4. Adding new element properties
	6.4.5. Input elements for element properties
	6.4.6. Editing existing form elements
	6.4.7. User interface internationalisation

	6.5. Extending the Spring MVC web application
	6.5.1. Spring configuration files
	formcentric-application.xml
	formcentric-actions.xml
	formcentric-captcha.xml
	formcentric-services.xml
	formcentric-controllers.xml
	formcentric-resourcebundle.xml
	formcentric-views.xml
	formcentric-views-jsp.xml
	formcentric-views-freemarker.xml
	formcentric-mail.xml
	formcentric-network.xml
	formcentric-connection.xml
	formcentric-analytics.xml
	formcentric-security.xml
	formcentric-metrics.xml

	6.5.2. Property Files
	formcentric-analytics.properties
	formcentric-captcha.properties
	formcentric-connection.properties
	formcentric-cors.properties
	formcentric-license.properties
	formcentric-mail.properties
	formcentric-metrics.properties
	formcentric-network.properties
	formcentric-optin.properties
	formcentric-pdf.properties

	6.5.3. Usage without Formcentric Analytics
	6.5.4. Formcentric licence file
	6.5.5. Web security
	6.5.6. Saving the form status
	BackendFormStateStore
	FileFormStateStore

	6.5.7. Implementing an action
	6.5.8. Adding variables for pre-filling form fields
	6.5.9. Implementing a REST service
	6.5.10. Template development
	FreeMarker templates
	FreeMarker functions and macros
	fc.forEachPageElement
	fc.forEachPage
	fc.include
	fc.url
	fc.responseHeader
	fc.summary
	fc.captcha
	fc.ifCaptcha
	fc.hasCaptcha
	fc.getStandardButton
	fc.valueOut
	fc.conditions
	fc.calculatedValues
	fc.markdown
	fc.vars
	fc.bind
	fc.encodeUrl
	fc.hasValidator
	fc.validatorByName
	fc.elementByName

	Security library
	fc.xsrfToken
	fc.xsrfTokenName
	fc.xsrfTokenValue

	JSP templates
	Taglib formcentric-1.0
	fc:forEachPageElement
	fc:forEachPage
	fc:summary
	fc:captcha
	fc:captchaLink
	fc:ifCaptcha
	fc:hasCaptcha
	fc:getStandardButton
	fc:forEachCondition
	fc:valueOut
	fc:conditions
	fc:calculatedValues
	fc:markdown
	fc:hasGlobalBindErrors
	fc:vars
	fc:url

	Taglib web-security-1.0
	fcs:xsrfToken
	fcs:xsrfTokenParam

	6.5.11. JavaScript
	jQuery-File-Upload
	jquery-autocomplete.js
	jquery-format-1.3.js
	json2.js
	Select2
	jquery-formcentric-1.9.js
	Event reference

	6.6. Extending the headless web application
	6.6.1. Implementing an action
	6.6.2. Adding variables for pre-filling form fields
	6.6.3. Implementing a REST service
	6.6.4. Property Files
	application.properties
	application-headless.properties

	6.7. Formcentric client
	6.7.1. Theme
	6.7.2. Initialisation
	6.7.3. Templates
	Template properties
	Components
	Modifying and extending templates

	6.7.4. Special integration scenarios
	6.7.5. Troubleshooting
	Debugging
	Local debugging via attribute
	Global activation

